专题36到底你要放缩到什么程度:放缩法证明数列不等式考纲要求:1、掌握放缩法证明数列不等式的理论依据——不等式的性质:2、掌握放缩的技巧与方法.基础知识回顾:放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:①等差数列求和公式:,(关于的一次函数或常值函数)②等比数列求和公式:,(关于的指数类函数)③错位相减:通项公式为“等差等比”的形式④裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:①在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手②在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。④若放缩后求和发现放“过”了,即与所证矛盾,通常有两条道路选择:第一个方法是微调:看能否让数列中的一些项不动,其余项放缩。从而减小放缩的程度,使之符合所证不等式;第二个方法就是推翻了原有放缩,重新进行设计,选择放缩程度更小的方式再进行尝试。(3)放缩构造裂项相消数列与等比数列的技巧:①裂项相消:在放缩时,所构造的通项公式要具备“依项同构”的特点,即作差的两项可视为同一数列的相邻两项(或等距离间隔项)②等比数列:所面对的问题通常为“常数”的形式,所构造的等比数列的公比也要满足,如果题目条件无法体现出放缩的目标,则可从所证不等式的常数入手,,常数可视为的形式,然后猜想构造出等比数列的首项与公比,进而得出等比数列的通项公式,再与原通项公式进行比较,看不等号的方向是否符合条件即可。例如常数,即可猜想该等比数列的首项为,公比为,即通项公式为。注:此方法会存在风险,所猜出的等比数列未必能达到放缩效果,所以是否选择利用等比数列进行放缩,受数列通项公式的结构影响(4)与数列中的项相关的不等式问题:①此类问题往往从递推公式入手,若需要放缩也是考虑对递推公式进行变形②在有些关于项的不等式证明中,可向求和问题进行划归,即将递推公式放缩变形成为可“累加”或“累乘”的形式,即或(累乘时要求不等式两侧均为正数),然后通过“累加”或“累乘”达到一侧为,另一侧为求和的结果,进而完成证明应用举例:类型一:与前n项和相关的不等式例1.【2017届江苏泰州中学高三摸底考试】已知数列的前项和满足:(为常数,且,).(1)求的通项公式;(2)设,若数列为等比数列,求的值;(3)在满足条件(2)的情形下,设,数列的前项和为,若不等式对任意的恒成立,求实数的取值范围.【答案】(1)(2)(3)(2)由(1)知,,即,若数列为等比数列,则有,而,,,故,解得,再将代入,得,例2.记.对数列和的子集,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.(1)求数列的通项公式;(2)对任意正整数,若,求证:;(3)设,求证:.【答案】(1)(2)详见解析(3)详见解析【解析】试题分析:(1)根据及时定义,列出等量关系,解出首项,写出通项公式;(2)根据子集关系,进行放缩,转化为等比数列求和;(3)利用等比数列和与项的大小关系,确定所定义和的大小关系:设,则因此由,因此中最大项必在A中,由(2)得.试题解析:(1)由已知得.于是当时,.又,故,即.所以数列的通项公式为.(2)因为,,所以.因此,.综合①②③得,.类型二、与通项运算相关的不等式例3.设函数,数列满足:.(1)求证:时,;(2)求证:();(3)求证:().【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.故,则有:例4.已知是数列的前项和,且对任意,有.其中为实数,且.(1)当时,①求数列的通项;②是否存在这样的正整数,使得成等比数列?若存在,给出满足的条件,否则,请说明理由.(2)当时,设,①判定是否为等比数列;②设,若对恒成立,求的取值范围.【答案】(1)①;②不存在;(2)①当且时,数列是以为首项,为公比的等比数列,当时,,不是等比数列;②.方法、规...