《文献检索与选读》课程论文高性能锂硫电池的研究进展摘要:目前传统的锂离子电池在电子产品中发挥着重要作用。然而受到其较低的理论比容量的限制(约150~200Wh/kg),锂离子电池将难以满足人类发展的长远需求,例如电动汽车行业的发展。锂硫电池的理论能量密度为2600Wh/kg,是锂离子二次电池的3~5倍,是极具应用前景的电化学储能体系,近年来引起了研究人员的广泛关注。人们提高电极导电性、维持电极结构稳定性、提高硫的负载率和利用率以及加强电池循环寿命等方面开展了大量的研究工作。本文将就近几年锂硫电池的发展进行相关介绍和讨论。关键词:锂硫电池正极材料纳米结构材料改性电解质电池结构ResearchprogressinHigh-PerformanceLithium-SulphurBatteriesRenGuodong(SchoolofMetallurgyandEnvironment,CentralSouthUniversity,0507110402)Abstract:Lithium-ionbatterieshasplayedanimportantroleintheelectronicsatpresent.Butduetoitslowtheoreticalenergydensity,whichisonly150~200Wh/kg,thereforethelithium-ionbatteriescannotmeetthelong-termneedsofsocietyinthefuture,justinthecaseofthedevelopmentofelectricvehicles.Lithium-sulphurbatteryisapromisingelectrochemicalenergystoragesystemwhichhashightheoreticalenergydensityof2600Wh/kg,thatis3~5timestolithium-ionbattery.Andithasarisedmoreandmoreattentionsrecently.Greateffortshavebeenmadebyreseacherstoimprovetheconductivityoftheelectrode,thestabilityofelectrodestructure,theloadingcapicityofsulphur,theutilizationefficiencyofsulfurinthecathodeandtheenhancementofcyclelifeofthebattery.Inthispaper,therecentresearchoflithium-sulphurbatterywillbeanalyzedanddiscussed.Keywords:lithium-sulphurbatterycathodematerialnano-structuremodificationelectrolytecellconfiguration1.前言电能储存技术和设备将会在未来社会发展中成为一项十分重要的需求。传统1《文献检索与选读》课程论文锂离子电池具有具有安全性好、无记忆效应、循环寿命长以及无污染等优点,目前已经成为各类电子产品的首选电源。在锂离子二次电池体系中,相比于负极材料(如石墨和硅负极材料),低比能量的正极材料(LiFePO4和LiCoO2理论比容量分别的170mAh/g、274mAh/g),一直是制约其发展的主要因素[1]。为此,人们将目光转向新型二次电池体系以期望获得更高的能量密度。在目前已知的正极材料中,硫具较高的比容量(1675mAh/g),与金属锂负极构成的Li/S电池的理论能量密度高达2600Wh/kg,是传统锂离子电池的3~5倍[2]。同时,相比于常见的锂离子电池正极材料(LiCoO2、LiMnO2和LiFePO4等),硫具有来源广泛、成本低、高安全性、对环境友好等特点,是一种具有巨大前景的高比能量正极材料。正因如此,锂硫电池引起了广大科研工作者极大的研究热情,成为近几年的研究及专利申请的热点[3]。然而,锂硫电池存在活性物质利用率低、循环寿命短、倍率性能差、自放电严重等问题,严重制约了其产业的化应用[4]。本文将分别从正极材料、电极材料改性、电解质、锂硫电池新型设计等方面介绍锂硫电池近几年的研究现状。2.锂硫电池正极材料的研究单质硫和硫化物在室温下是电子与离子的绝缘体[4],因此目前的研究过程中,为了保证电池能在高电流密度下发生可逆的电化学反应,需要将硫与其他导电介质进行复合。常用的正极材料有:二元金属硫化物、硫/金属氧化物复合材料、硫/碳复合材料等[1]。2.1二元金属硫化物二元金属硫化物是锂硫电池发展初期研究比较多的材料,它们一般具有较大的理论比容量,并且合成简单。但是由于安全问题、功率密度较低、电活性以及硫利用率较低等问题而受到限制。二元金属硫化物的合成方法除了常见的高温固相合成、机械球磨法外,还有溶剂热法、电化学沉积法等。V.A.Dusheiko[5]等,在600~1050℃温度范围内,采用不同的升温和降温速率发生反应得到TiS2、MoS3、V2S2等二元硫化物,并将得到的材料进行电化学性能测试。通过对比不同条件下合成的正极活性物质的电化学测试数据,总结得出了化学反应条件对材...