电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考本源探究之平面解析几何VIP免费

高考本源探究之平面解析几何_第1页
高考本源探究之平面解析几何_第2页
高考本源探究之平面解析几何_第3页
平面解析几何一、思维方法结构图平面解析几何是中学数学中独具特色的一门学科.它的学科思想是用代数方法解决几何问题.解析几何课教学的根本任务就是要引导学生能深刻领会“平面解析几何”的学科思想,把握“平面解析几何”这门学科的思维方法.在平面解析几何的综合性问题的教学中,要突出解析几何的研究问题的一般方法,要能够明确用代数方法解决几何问题的几个关键的步骤:(1)要能够根据问题的条件,读出几何对象的几何特征.从两个方面去分析:对于单个的几何对象,要研究它的几何性质,对于不同的几何对象,要关注它们之间的位置关系.再此基础上做出图形,直观地表达出所分析出来的几何对象的几何特征;(2)在明确了几何对象的几何特征的基础上,要进行有效的、合理的代数化.包括几何元素的代数化、位置关系的代数化、所要研究问题的目标进行代数化等;(3)进行代数运算.包括解所联系的方程组、消去所引进的参数、运用函数的研究方法解决有关的最值问题,等等.(4)根据经过代数运算得到的代数结果,分析得出几何的结论.平面解析几何综合题的教学,要能够教出味道,教出东西来.让学生在解决问题的过程中去体会平面解析几何的基本思想,掌握平面研究解析几何问题的一般方法.而要实现这个目标,教师就要打破模式化的束缚,从解决问题的思维层面去引导学生思考问题与解决问题,要让学生能够从学科的思维方法角度理解解题的环节.这种理性地认识我们的解题过程,才能够真正地让学生们掌握研究问题的方法,在教学中的教的逻辑才能够得以实施,学的逻辑也才能够让学生理解和接受.二、例题1.已知圆和两点,,若圆上存在点,使得,则的最大值为2.如何理解:“直线通过点”?3.如果圆C:总存在两点到原点距离为1,求实数的取值范围.4.在平面直角坐标系中,点,直线.设圆的半径为1,圆心在上.若圆上存在点,使2MAMO,求圆心的横坐标的取值范围.5.过定点M(4,2)任作互相垂直的两条直线和,分别与x轴、y轴交于A,B两点,线段AB中点为P,求的最小值.6.满足条件的三角形的面积的最大值7.直线与圆相交于、两点(其中是实数),且是直角三角形(是坐标原点),则点与点之间距离的最大值为()A.B.C.D.8.如图,线段,点在线段上,且,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点.设,的面积为.则的定义域为;的零点是.9.已知点,.若点在函数的图象上,则使得的面积为2的点的个数为10.直线与圆交于两点,且关于直线对称.求的值.11.双曲线,右支上一点M,的内切圆与x轴切于P点,则的值是12.直线与圆的位置关系是13.设关于,的不等式组表示的平面区域内存在点,满足,求得的取值范围是A.B.C.D.14.若实数满足,则的最小值是.15点P在左右焦点分别为的双曲线上,若则=ACPBD16.已知椭圆的左右焦点分别为,点P在椭圆上,若P,是一个直角三角形的三个顶点,则点P到轴的距离为17.已知椭圆C:.确定的取值范围,使得对于直线,C上有两个不同的点关于该直线对称.18.抛物线上存在两点关于直线对称,求的取值范围.19.已知菱形的顶点在椭圆上,对角线所在直线的斜率为1.(Ⅰ)当直线过点时,求直线的方程;(Ⅱ)当时,求菱形面积的最大值.20.设分别为椭圆的左、右顶点,设为直线上不同于点(4,0)的任意一点,若直线分别与椭圆相交于异于的点,证明点在以为直径的圆内.21.已知:在上,直线倾斜角为,且.证明直线过定点.22.已知椭圆.设为原点,若点在椭圆上,点在直线上,且,试判断与圆的位置关系,并证明你的结论.23.已知W:(),若A,B是W上的不同两点,O是坐标原点,求·的最小值.三、如何教会学生解决数学问题的方法如何找到解决数学问题的方法呢.过去我强调比较多的是解决数学问题的一般方法,但是这样的阐述就解决数学问题而言还不是全面的.我曾经的一个观点是解决数学问题的方法越少越好,就是针对解决数学问题的一般方法而言的.但是解决数学问题只靠一般方法就能解决吗?换句话说,解决数学问题的一般方法是解决哪个方面的问题?为什么叫一般方法或通性通法呢?我们常见的数学问题(这里专指学生做的数学题目)都包含两个要素:一个是这个问题中涉及到的研究对象,如函数的解析式、曲线...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

精品文库+ 关注
实名认证
内容提供者

小学学习各类资料大全

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部