电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

备战高考数学 解答题高分宝典 专题04 立体几何(核心考点)理-人教版高三全册数学试题VIP免费

备战高考数学 解答题高分宝典 专题04 立体几何(核心考点)理-人教版高三全册数学试题_第1页
1/11
备战高考数学 解答题高分宝典 专题04 立体几何(核心考点)理-人教版高三全册数学试题_第2页
2/11
备战高考数学 解答题高分宝典 专题04 立体几何(核心考点)理-人教版高三全册数学试题_第3页
3/11
专题04立体几何核心考点一平行关系的证明平行关系包括直线与直线平行、直线与平面平行及平面与平面平行,平行关系的证明一般作为解答题的第一问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.答题模板证明BE∥平面DMF的步骤第一步,在平面DMF内找出一条直线MO与BE平行;第二步,指出BE平面DMF,MO平面DMF;第三步,由线面平行的判断定理得BE∥平面DMF.【满分答案】(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE平面DMF,MO平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE平面MNG,GN平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD平面MNG,MN平面MNG,所以BD∥平面MNG.因为DE与BD为平面BDE内的两条相交直线,所以平面BDE∥平面MNG.【解题技巧】1.判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄α,a⊄β,a∥α⇒a∥β).2.证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.3.平行关系之间的转化在证明线面、面面平行时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向是由题目的具体条件而定的,不可过于“模式化”.模拟训练1.如图所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点.(1)当等于何值时,BC1∥平面AB1D1?(2)若平面BC1D∥平面AB1D1,求的值.【解析】(1)如图所示,取D1为线段A1C1的中点,此时=1.连接A1B,交AB1于点O,连接OD1.(2)由平面BC1D∥平面AB1D1,且平面A1BC1∩平面BC1D=BC1,平面A1BC1∩平面AB1D1=D1O,得BC1∥D1O,同理AD1∥DC1,∴=,=,又 =1,∴=1,即=1.核心考点二垂直关系的证明平行关系包括直线与直线垂直、直线与平面垂直及平面与平面垂直,垂直关系的证明一般作为解答题的第一问,难度中等或中等以下,解答此类问题要注意步骤的规范.【经典示例】如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.答题模板证明PD⊥平面ABE(线面垂直)的步骤:第一步,证明AE⊥PD,AB⊥PD(在平面ABE内找出两条直线与AD垂直);.第二步,指出AB∩AE=A(两直线相交);.第三步,利用线面垂直的判定定理确定PD⊥平面ABE.【满分答案】(1)在四棱锥PABCD中, PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD. AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA. E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD. PA⊥底面ABCD,∴PA⊥AB.又 AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又 AB∩AE=A,∴PD⊥平面ABE.【解题技巧】1.证明线面垂直的常用方法及关键(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.2.判定面面垂直的方法①面面垂直的定义;②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

备战高考数学 解答题高分宝典 专题04 立体几何(核心考点)理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部