专题五、六解析几何、概率与统计教书用书文第1讲直线与圆高考定位高考对本内容的考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以填空题的形式出现,有时也会出现解答题,多考查其几何图形的性质或方程知识.多为B级或C级要求.真题感悟1.(2015·江苏卷)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.解析直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r==.故所求圆的标准方程为(x-1)2+y2=2.答案(x-1)2+y2=22.(2016·江苏卷)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+TP=TQ,求实数t的取值范围.解(1)圆M的方程化为标准形式为(x-6)2+(y-7)2=25,圆心M(6,7),半径r=5,由题意,设圆N的方程为(x-6)2+(y-b)2=b2(b>0).且=b+5.解得b=1,∴圆N的标准方程为(x-6)2+(y-1)2=1.(2) kOA=2,∴可设直线l的方程为y=2x+m,即2x-y+m=0.又BC=OA==2.由题意,圆M的圆心M(6,7)到直线l的距离为d===2.即=2,解得m=5或m=-15.∴直线l的方程为y=2x+5或y=2x-15.(3)由TA+TP=TQ,则四边形AQPT为平行四边形,又 P、Q为圆M上的两点,∴|PQ|≤2r=10.∴|TA|=|PQ|≤10,即≤10,解得2-2≤t≤2+2.故所求t的范围为[2-2,2+2].考点整合1.两直线平行或垂直(1)两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在且l1与l2不重合时,l1∥l2.(2)两条直线垂直:对于两条直线l1,l2,其斜率分别为k1,k2,则有l1⊥l2⇔k1·k2=-1.特别地,当l1,l2中有一条直线的斜率不存在,另一条直线的斜率为零时,l1⊥l2.2.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2(r>0),圆心为(a,b),半径为r.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0),圆心为,半径为r=;对于二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是3.直线方程的5种形式中只有一般式可以表示所有的直线.在利用直线方程的其他形式解题时,一定要注意它们表示直线的局限性.比如,根据“在两坐标轴上的截距相等”这个条件设方程时一定不要忽略过原点的特殊情况.而题中给出直线方程的一般式,我们通常先把它转化为斜截式再进行处理.4.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.5.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值.(3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题.(5)两圆相离,两圆上点的距离的最值.热点一直线与圆的基本问题[微题型1]求圆的方程【例1-1】已知圆M的圆心在x轴上,且圆心在直线l1:x=-2的右侧,若圆M截直线l1所得的弦长为2,且与直线l2:2x-y-4=0相切,则圆M的方程为________.解析由已知,可设圆M的圆心坐标为(a,0),a>-2,半径为r,得解得满足条件的一组解为所以圆M的方程为(x+1)2+y2=4.答案(x+1)2+y2=4探究提高求具备一定条件的圆的方程时,其关键是寻找确定圆的两个几何要素,即圆心和半径,待定系数法也是经常使用的方法,在一些问题中借助平面几何中关于圆的知识可以简化计算,如已知一个圆经过两个点时,其圆心一定在这两点连线的垂直平分线上,解题时要注意平面几何知识的应用.[微题型2]圆的切线问题【例1-2】(1)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为________.(2)若⊙O:x2+y2=5与⊙O1:(x-m)2+y2=...