电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题七 附加题(选做部分)第1讲 几何证明选讲练习 理-人教版高三全册数学试题VIP免费

创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题七 附加题(选做部分)第1讲 几何证明选讲练习 理-人教版高三全册数学试题_第1页
1/2
创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题七 附加题(选做部分)第1讲 几何证明选讲练习 理-人教版高三全册数学试题_第2页
2/2
专题七附加题(选做部分)第1讲几何证明选讲练习理1.(2016·南京、盐城模拟)如图,AB为⊙O的直径,直线CD与⊙O相切于点D,AC⊥CD,DE⊥AB,点C,E为垂足,连接AD,BD,若AC=4,DE=3,求BD的长.解因为CD与⊙O相切于点D,所以∠CDA=∠DBA,又AB为⊙O的直径,所以∠ADB=90°.又DE⊥AB,所以△EDA∽△DBA,所以∠EDA=∠DBA,所以∠EDA=∠CDA.又∠ACD=∠AED=90°,AD=AD,所以△ACD≌△AED.所以AE=AC=4,所以AD==5.又=,所以BD=·AD=.2.(2010·江苏卷)AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.证明连接OD,则OD⊥DC,又OA=OD,DA=DC,所以∠DAO=∠ODA=∠DCO,∠DOC=∠DAO+∠ODA=2∠DCO,所以∠DCO=30°,∠DOC=60°,所以OC=2OD,即OB=BC=OD=OA,所以AB=2BC.3.(2011·江苏卷)如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2),圆O1的弦AB交圆O2于点C(O1不在AB上).求证:AB∶AC为定值.证明如图,连接AO1并延长,分别交两圆于点E和点D.连接BD,CE.因为圆O1与圆O2内切于点A,所以点O2在AD上,故AD,AE分别为圆O1,圆O2的直径.从而∠ABD=∠ACE=.所以BD∥CE,于是===.所以AB∶AC为定值.4.(2013·江苏卷)如图,AB和BC分别与圆O相切于点D,C,AC经过圆心O,且BC=2OC.求证:AC=2AD.证明连接OD.因为AB和BC分别与圆O相切于点D,C,所以∠ADO=∠ACB=90°.又因为∠A=∠A,所以Rt△ADO∽Rt△ACB.所以=.又BC=2OC=2OD,故AC=2AD.5.(2012·江苏卷)如图,AB是圆O的直径,D,E为圆上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.证明连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.6.(2016·全国Ⅰ卷)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(1)证明:直线AB与⊙O相切;(2)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.证明(1)设E是AB的中点,连接OE.因为OA=OB,∠AOB=120°,所以OE⊥AB,∠AOE=60°,在Rt△AOE中,OE=AO,即O到直线AB的距离等于⊙O的半径,所以直线AB与⊙O相切.(2)连接OD,因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设O′是A,B,C,D四点所在圆的圆心,作直线OO′.由已知得O在线段AB的垂直平分线上,又O′在线段AB的垂直平分线上,所以OO′⊥AB.同理可证OO′⊥CD,所以AB∥CD.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

创新设计(江苏专用)高考数学二轮复习 上篇 专题整合突破 专题七 附加题(选做部分)第1讲 几何证明选讲练习 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部