专题七附加题(必做部分)第1讲立体几何中的向量方法练习理1.(2016·南通调研)如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,AB=1,AD=AS=2,P是棱SD上一点,且SP=PD.(1)求直线AB与CP所成角的余弦值;(2)求二面角A-PC-D的余弦值.解(1)如图,以A为坐标原点,分别以AB,AD,AS所在直线为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),S(0,0,2).设P(x0,y0,z0),由SP=SD得(x0,y0,z0-2)=(0,2,-2),所以x0=0,y0=,z0=,点P坐标为.CP=,AB=(1,0,0).设直线AB与CP所成的角为α,由图可知,α为锐角,则cosα===.(2)设平面APC的法向量为m=(x1,y1,z1),由于AC=(1,2,0),AP=,所以令y1=-2,则x1=4,z1=1,m=(4,-2,1).设平面DPC的法向量为n=(x2,y2,z2),由于DC=(1,0,0),CP=,所以令y2=1,则z2=1,n=(0,1,1).设二面角A-PC-D的大小为θ,由于cos〈m,n〉==-,由于θ为钝角,所以cosθ=cos〈m,n〉=-.2.(2015·山东卷)如图,在三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.(1)证明法一连接DG,CD,设CD∩GF=O,连接OH,在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD,又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.法二在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解设AB=2,则CF=1.在三棱台DEF-ABC中,G为AC的中点,由DF=AC=GC,可得四边形DGCF为平行四边形,因此DG∥FC,又FC⊥平面ABC,所以DG⊥平面ABC.在△ABC中,由AB⊥BC,∠BAC=45°,G是AC中点.所以AB=BC,GB⊥GC,因此GB,GC,GD两两垂直.以G为坐标原点,建立如图所示的空间直角坐标系G-xyz.所以G(0,0,0),B(,0,0),C(0,,0),D(0,0,1).可得H,F(0,,1),故GH=,GF=(0,,1).设n=(x,y,z)是平面FGH的一个法向量,则由可得可得平面FGH的一个法向量n=(1,-1,).因为GB是平面ACFD的一个法向量,GB=(,0,0).所以cos〈GB,n〉===.所以平面FGH与平面ACFD所成角(锐角)的大小为60°.3.(2016·四川卷)如图,在四棱锥P-ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.E为边AD的中点,异面直线PA与CD所成的角为90°.(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;(2)若二面角P-CD-A的大小为45°,求直线PA与平面PCE所成角的正弦值.解(1)在梯形ABCD中,AB与CD不平行.延长AB,DC,相交于点M(M∈平面PAB),点M即为所求的一个点.理由如下:由已知,BC∥ED,且BC=ED.所以四边形BCDE是平行四边形.从而CM∥EB.又EB⊂平面PBE,CM⊄平面PBE.所以CM∥平面PBE.(说明:延长AP至点N,使得AP=PN,则所找的点可以是直线MN上任意一点)(2)法一由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.于是CD⊥PD.从而∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.由PA⊥AB,可得PA⊥平面ABCD.设BC=1,则在Rt△PAD中,PA=AD=2.作Ay⊥AD,以A为原点,以AD,AP的方向分别为x轴,z轴的正方向,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),P(0,0,2),C(2,1,0),E(1,0,0).所以PE=(1,0,-2),EC=(1,1,0),AP=(0,0,2).设平面PCE的法向量为n=(x,y,z).由得设x=2,解得n=(2,-2,1).设直线PA与平面PCE所成角为α,则sinα===.所以直线PA与平面PCE所成角的正弦值为.法二由已知,CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.从而CD⊥PD.所以∠PDA是二面角P-CD-A的平面角.所以∠PDA=45°.设BC=1,则在Rt△PAD中,PA=AD=2.过点A作AH⊥CE,交CE的延长线于点H,连接PH.易知PA⊥平面ABCD,从而PA⊥CE.且PA∩AH=A,于是CE⊥平面PAH.又CE⊂平面PCE所以平面PCE⊥平...