第1讲相似三角形的判定及有关性质INCLUDEPICTURE"../课时作业.tif"\*MERGEFORMAT基础巩固题组(建议用时:50分钟)一、填空题1.如图,BD,CE是△ABC的高,BD,CE交于F,写出图中所有与△ACE相似的三角形为________.解析Rt△ACE与Rt△FCD和Rt△ABD各共一个锐角,因而它们均相似,又易知∠BFE=∠A,故Rt△ACE∽Rt△FBE.答案△FCD、△FBE、△ABD2.如图,在△ABC中,M,N分别是AB,BC的中点,AN,CM交于点O,那么△MON与△AOC面积的比是________.解析∵M,N分别是AB,BC中点,故MN綉AC,∴△MON∽△COA,∴==.答案1∶43.(2015·渭南模拟)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=________.解析由于∠ACD=∠AEB=90°,∠B=∠D,∴△ABE∽△ADC,∴=.又AC=4,AD=12,AB=6,∴AE===2.答案24.(2014·佛山质检)如图,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,点E,F分别为线段AB,AD的中点,则EF=________.解析连接DE和BD,依题知,EB∥DC,EB=DC=,CB⊥AB,∴EBCD为矩形,∴DE⊥AB,又E是AB的中点,所以△ABD为等腰三角形.故AD=DB=a,∵E,F分别是AD,AB的中点,∴EF=DB=a.答案5.如图,△ABC∽△AFE,EF=8,且△ABC与△AFE的相似比是3∶2,则BC等于________.解析∵△ABC∽△AFE,∴=.又EF=8,∴BC=12.答案126.已知圆的直径AB=13,C为圆上一点,过C作CD⊥AB于D(AD>BD),若CD=6,则AD=________.解析如图,连接AC,CB,∵AB是⊙O的直径,∴∠ACB=90°.设AD=x,∵CD⊥AB于D,∴由射影定理得CD2=AD·DB,即62=x(13-x),∴x2-13x+36=0,解得x1=4,x2=9.∵AD>BD,∴AD=9.1答案97.(2013·广东卷)如图,在矩形ABCD中,AB=,BC=3,BE⊥AC,垂足为E,则ED=________.解析在Rt△ABC中,BC=3,AB=,所以∠BAC=60°.因为BE⊥AC,AB=,所以AE=,在△EAD中,∠EAD=30°,AD=3,由余弦定理知,ED2=AE2+AD2-2AE·AD·cos∠EAD=+9-2××3×=,故ED=.答案8.(2014·茂名模拟)如图,已知AB∥EF∥CD,若AB=4,CD=12,则EF=________.解析∵AB∥CD∥EF,∴=,=,∴=,=,∴4(BC-BF)=12BF,∴BC=4BF,∴=4=,∴EF=3.答案39.如图,在梯形ABCD中,AD∥BC,BD与AC相交于O,过O的直线分别交AB,CD于E,F,且EF∥BC,若AD=12,BC=20,则EF=________.解析∵EF∥AD∥BC,∴△OAD∽△OCB,OA∶OC=AD∶BC=12∶20,△OAE∽△CAB,OE∶BC=OA∶CA=12∶32,∴EF=2××20=15.答案15二、解答题10.如图,△ABC中,AB=AC,∠BAC=90°,AE=AC,BD=AB,点F在BC上,且CF=BC.求证:(1)EF⊥BC;(2)∠ADE=∠EBC.证明设AB=AC=3a,则AE=BD=a,CF=a.(1)==,==,∴=.又∠C为公共角,故△BAC∽△EFC,由∠BAC=90°,∴∠EFC=90°,∴EF⊥BC.(2)由(1)得EF=a,故==,==,∴=.∵∠DAE=∠BEF=90°,∴△ADE∽△FBE,∴∠ADE=∠EBC.11.如图,已知△ABC中的两条角平分线AD和CE相交于2H,∠B=60°,F在AC上,且AE=AF.求证:(1)B,D,H,E四点共圆;(2)EC平分∠DEF.证明(1)在△ABC中,因为∠B=60°,所以∠BAC+∠BCA=120°.因为AD,CE是角平分线,所以∠HAC+∠HCA=60°,故∠AHC=120°,于是∠EHD=∠AHC=120°.因为∠EBD+∠EHD=180°,所以B,D,H,E四点共圆.(2)连接BH,则BH为∠ABC的角平分线,∠HBD=30°,由(1)知B,D,H,E四点共圆,所以∠CED=∠HBD=30°,因为AE=AF,AD为角平分线,所以EF⊥AD,又∠AHE=∠EBD=60°,所以∠CEF=30°,所以EC平分∠DEF.12.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,过点D作AC的平行线DE,交BA的延长线于点E,求证:(1)△ABC≌△DCB;(2)DE·DC=AE·BD.证明(1)∵四边形ABCD是等腰梯形,∴AC=BD.∵AB=DC,BC=CB,∴△ABC≌△DCB.(2)∵△ABC≌△DCB,∴∠ACB=∠DBC,∠ABC=∠DCB,∵AD∥BC,∴∠DAC=∠ACB,∠EAD=∠ABC,∴∠DAC=∠DBC,∠EAD=∠DCB,∵ED∥AC,∴∠EDA=∠DAC,∴∠EDA=∠DBC,∴△ADE∽△CBD.∴DE∶BD=AE∶DC,∴DE·DC=AE·BD.3