同步导学方案课后强化演练第6节带电粒子在匀强磁场中的运动1.用洛伦兹力演示仪观察电子的轨迹(1)不加磁场时,观察到电子束的径迹是直线.(2)加上匀强磁场时,让电子束垂直射入磁场,观察到的电子径迹是圆周.(3)保持电子的出射速度不变,改变磁场的磁感应强度,发现磁感应强度变大,圆形径迹的半径变小.教材要点解读对应学生用书P96(4)保持磁场的磁感应强度不变,改变电子的出射速度,发现电子的出射速度越大,圆形径迹的半径越大.结论:(1)当带电粒子以速度v平行于磁场方向进入匀强磁场后,粒子所受洛伦兹力为零,所以粒子将以速度v做匀速直线运动.(2)当带电粒子以一定的速度垂直进入磁场时做圆周运动,且圆周运动的半径与磁场的强弱及粒子的入射速度有关.2.带电粒子在匀强磁场中的圆周运动如图所示,带电粒子以速度v垂直磁场方向入射,在磁场中做匀速圆周运动,设带电粒子的质量为m,所带的电荷量为q.(1)轨道半径:由于洛伦兹力提供向心力,则有qvB=mv2r,得到轨道半径r=mvqB.(2)周期:由轨道半径与周期之间的关系T=2πrv可得周期T=2πmqB.(1)由公式r=mvqB知,在匀强磁场中,做匀速圆周运动的带电粒子,其轨道半径跟运动速率成正比.(2)由公式T=2πmqB知,在匀强磁场中,做匀速圆周运动的带电粒子,周期跟轨道半径和运动速率均无关,而与比荷qm成反比.3.带电粒子在磁场中做圆周运动时圆心、半径和运动时间的确定方法(1)圆心的确定.圆心一定在与速度方向垂直的直线上,常用三种方法确定:①已知粒子的入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图甲所示,P为入射点,M为出射点.②已知粒子的入射点和出射点的位置时,可以通过入射点作入射方向的垂线,再连接入射点和出射点作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图乙所示,P为入射点,M为出射点,这种方法在不明确出射方向的时候使用.③若仅知道粒子进入磁场前与离开磁场后的速度方向,可找两速度方向延长线夹角的角平分线以确定圆心位置范围,再结合其他条件以确定圆心的具体位置.(2)半径的确定和计算如图所示,利用平面几何关系,求出该圆的可能半径(或圆心角),并注意利用以下两个重要几何关系:①粒子速度的偏向角φ等于圆心角α,并等于弦AB与切线的夹角(弦切角θ)的2倍,即φ=α=2θ=ωt.②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°.(3)运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动的时间可表示为:t=α360°T或t=α2πT.当α为角度时用t=α360°T,当α为弧度时,用t=α2πT.4.带电粒子在有界磁场中运动的几个问题(1)常见有界磁场边界的类型如下图所示.(2)带电粒子运动与磁场边界的关系①刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.②当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)带电粒子在有界磁场中运动的对称性①从某一直线边界射入的粒子,从同一边界射出时,速度与边界的夹角相等.②在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.(1)只有当带电粒子以垂直于磁场的方向射入匀强磁场中时,带电粒子才能做匀速圆周运动,两个条件缺一不可.(2)垂直进入匀强磁场的带电粒子,它的初速度和所受洛伦兹力的方向都在跟磁场垂直的平面内,没有任何作用使粒子离开这个平面,所以粒子只能在这个平面内运动.1.结构:质谱仪由静电加速电极、速度选择器、偏转磁场、显示屏等组成.(如图)2.原理:(1)粒子源及加速电场:使带电粒子获得速度v进入速度选择器,v=2qUm.(2)速度选择器:只有做匀速直线运动的粒子才能通过,即qE=qvB1,所以v=EB1.(3)偏转磁场及成像显示装置:粒子源产生的粒子在进入加速电场时的速度很小,可以认为等于零,则加速后有qU=12mv2,所以v=2qUm.在偏转磁场中,有qvB2=mv2r,故轨道半径r=mvB2q=mqB22qUm=2mUqB22所以粒子质量m=qB22r22U.若粒子电荷量q也未知,通过质谱仪可求出该粒子的比荷qm=2UB22r2.3.质谱仪的应用质谱仪...