电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

图形的相似教案VIP免费

图形的相似教案_第1页
图形的相似教案_第2页
图形的相似教案_第3页
第二十四章图形的相似相似三角形1一.教学目标:1.知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3.情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二.教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明三.教学过程:(一)类比联想,动手实验1.回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形所具有的性质(对应边、对应角相等)。2.让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系?(二)直观演示,展示新知A/1.相似三角形的定义C’将上面所截得的三角形移出,记为B/AA’B’C’,原三角形记为ABC,因此有A=A’。,BBB=B’,C’,BC,,即两个三角形的对应角相等,对应边成比例。这样的两个三角形虽然大小不一定相等,但形状相同。定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。2.表示方法:教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可以以此与全等符号及表示作一比较,加强记忆)。3.相似三角形的性质:相似三角形的对应角相等,对应边成比例。4.相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。强调:A’B’C’与ABC的相似比是k,则ABC与A’B’C’的相似比是。练习:判断下列命题是否正确。错误的,举出反例;正确的,用定义加以说明:⑴所有的等腰三角形都相似。⑵所有的等边三角形都相似。⑶所有的直角三角形都相似。⑷所有的等腰直角三角形都相似。教师示范一个规范过程,让学生模仿,学会用定义来解决问题。A(三)范例研讨,迁移练习:1.例1。如图,在ABC中,DEDE//BC,D。E分别在AB,AC上。求证:△ADE∽△ABCBCF师生共同探讨:(1)目前要证明两个三角形相似只能根据什么?(定义)(2)根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3)△ADE与△ABC满足“对应角相等”吗?为什么?(4)对应边成比例,由“DE//BC”的条件可得到怎样的比例式?(5)本题的关键归结为“只要证明什么”?(6)根据以前的推论,如何把DE移到BC上去,即应添怎样的辅助线?(EF//AB)教师板演证明过程。2.如图,DE//BC,D、E分别在BA、CA的延长线上,DE△ADE与△ABC相似吗?A——相似CB由此得到预备定理:3.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。4.例2,如图,D为△ABC的AB边上的一点,过点D作CDE//AC,交BC于E,已知BE:EC=2:1,AC=6CM,求DE的长。5、练习:P122页1、2、36、课后拓展(机动):(1)如图甲,已知ABD∽ACB,则AD:AB=:,AB:BD=:,如果AD=2,DC=1,那么AB=(2),如图乙,在ABC中,AD是角平分线,求证:。AADBCBDC图甲图乙五、归纳总结、布置作业:1.今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比是1;2.平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。作业相似三角形2四.教学目标:1.知识目标:(1)近一步理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)巩固判定三角形相似的预备定理及应用⑶掌握判定三角形相似的其他三个方法2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3.情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。五.教学重点、难点:重点:判定三角形相似的其他三个方法难点;判定三角形相似的其他三个方法及应用三课堂探究:探究一在一张方格纸上画一个三角形,再画一个三角形,使它的各边长...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部