电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

光滤波器概述VIP免费

光滤波器概述_第1页
1/4
光滤波器概述_第2页
2/4
光滤波器概述_第3页
3/4
光滤波器光滤波器是用来进行波长选择的仪器,它可以从众多的波长中挑选出所需的波长,而除此波长以外的光将会被拒绝通过。它可以用于波长选择、光放大器的噪声滤除、增益均衡、光复用/解复用。概述光耦合器或者光复用器是把不同波长的光复用到一根光纤中的,不同的波长传载着不同的信息。那么在接收端,要从光纤中分离出所需的波长,就要用到光滤波器。[1][1]理论基础笼统地讲,凡是能够选择光频的技术,原则上都可用于制造光滤波器。光滤波器基本是由以下理论构筑其理论基础。角色散理论光栅分光原理示意图[2]由光学理论可知,光栅和三棱镜是一种典型的角色散元件。当多种波长的混合光通过这些元件时,就会发生衍射,由于衍射角的不同,可使混合波发生分离,从而获得单一波长的光。a.光栅的分光原理附图是利用光栅将混合光波进行分离的原理示意图。从光纤输入的混合波(λ1、λ2、λ3),经过透镜(L1)准直后射向光栅,不同波长的光信号由于衍射角不同,经过透镜(L2)聚焦在不同的位置上,并将光信号耦合进不同的光纤中进行输出。这就是光栅的分光原理。角色散元件的主要性能指标是角色散和色分辨本领。角色散本领是相距单位波长的光波被散开(分离)的角度。其表达式为:D(θ)δθ/δλ它的物理意义是表明不同波长的谱线中心分开的程度。而色分辨本领是分辨波长很接近的谱线的能力,它定义为:R=λ/δλmin式中δλmin是瑞利判据所规定的角色散元件能够分辨的两谱线的最小波长差。由这里可以想象到,在密集波分复用(DWDM)系统,为了减少光信道之间的串扰,信道之间的间隔应远大干复用器能够分辨的最小波长差。在这里须指出,光栅的含义不仅仅是指在单位距离内所刻蚀出的众多沟槽的那一种结构。凡是具有周期性空间结构或周期性光学性质的结构者都可认为它是一种光栅。也就是说,应该从广义上去理解光栅。光栅的相邻两峰之间的距离,通常称为光栅常数,记作d。依此表示的角色散本领为:D(θ)=K/(2dcosθ)色分辨本领为:R∝NK上两式中,K是光栅的衍射级数。由此可知D(θ)与d成反比,与K成正比。而色分辨本领与光栅的总槽数N和K成正比。因此,要想得到性能好的光栅,总槽数N应尽量大,光栅常数d应尽量小,并尽量选用高的衍射级数。当然,这种追求会给光栅的制造带来一定的困难。[2]棱镜的分光原理示意图[3]b.棱镜的分光原理棱镜的分光原理如附图所示。它的工作原理是:含有多个光波长的信号的光,经透镜准直后,通过三棱镜将光分离,分离后的光再经过另一透镜聚焦并耦合进相应的光纤中进行传播。众所周知,不同波长在同一种物质中的传播速度是不一样的,也就是说折射率n(n=c/V)随波长而变。若选用dn/dλ,大的材料作棱镜,就可以得到大的角色散本领和高的色分辨本领。此外,若使棱镜面的宽度适当增大并尽可能减小准直透镜的直径,就可获得最佳性能的分光效果。以上系统中的透镜,可以用自聚焦透镜来代替,其效果完全一样。[2]干涉膜滤波原理于涉膜潞光器结构示意图[4]干涉膜的结构如附图所示。它由两种折射率(n)大小不等的介质膜交替叠加而成。其厚度为1/4波长,通过介质膜的不同选择构成长波通、短波通和带通滤波器。高折射率层反射的光线其相位不会偏移,低折射率层反射的光线其相位偏移180度。通过每层薄膜界面上多次反射和透射光的线性叠加,当光程差等于光波长时,或是同相位时,多次透射光就会发生干涉,同相加强,形成强的透射光波,而反相光波相互抵消。通过适当设计多层介质膜系统,就可得到滤波性能良好的滤光片。干涉膜滤光片的每一层薄膜类似于法布里-罗(F-P)腔。众所周知,法布里一泊罗腔的选频特性是基于在腔内形成驻波。通过腔长的控制来控制谐振波的多少,当腔长很短时,只允许几个甚至于一个波存在。由于干涉膜是多层结构,从而可以达到对多种波长的选择。M—Z干涉滤波器[5]总之,利用干涉原理,就可设计出滤波器。例如马赫一曾德(Mach-Zahnder,M-Z)干涉结构就可作光滤波器,如附图所示。输入信号光功率Pin经第一个3dB耦合器后,等分为P1和P2两部分。由于路程差不同,当到达第二个3dB耦合器时,相位差将决定合成后输出光的强度。同相加强,反相...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

光滤波器概述

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部