电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学回归课本 不等式教案 旧人教版 VIP免费

高考数学回归课本 不等式教案 旧人教版 _第1页
1/6
高考数学回归课本 不等式教案 旧人教版 _第2页
2/6
高考数学回归课本 不等式教案 旧人教版 _第3页
3/6
高考数学回归课本教案第九章不等式一、基础知识不等式的基本性质:(1)a>ba-b>0;(2)a>b,b>ca>c;(3)a>ba+c>b+c;(4)a>b,c>0ac>bc;(5)a>b,c<0acb>0,c>d>0ac>bd;(7)a>b>0,n∈N+an>bn;(8)a>b>0,n∈N+;(9)a>0,|x|ax>a或x<-a;(10)a,b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a,b∈R,则(a-b)2≥0a2+b2≥2ab;(12)x,y,z∈R+,则x+y≥2,x+y+z前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0,c>d>0,所以ac>bc,bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)=(a+b+c)[(a-b)2+(b-c)2+(c-a)2]≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当且仅当x=y=z时成立。二、方法与例题1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1设a,b,c∈R+,试证:对任意实数x,y,z,有x2+y2+z2【证明】左边-右边=x2+y2+z2所以左边≥右边,不等式成立。例2若alog(1-x)(1-x)=1(因为0<1-x2<1,所以>1-x>0,0<1-x<1).所以|loga(1+x)|>|loga(1-x)|.(2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。例3已知a,b,c∈R+,求证:a+b+c-3≥a+b【证明】要证a+b+c≥a+b只需证,因为,所以原不等式成立。例4已知实数a,b,c满足0(n+1)n.【证明】1)当n=3时,因为34=81>64=43,所以命题成立。2)设n=k时有kk+1>(k+1)k,当n=k+1时,只需证(k+1)k+2>(k+2)k+1,即>1.因为,所以只需证,即证(k+1)2k+2>[k(k+2)]k+1,只需证(k+1)2>k(k+2),即证k2+2k+1>k2+2k.显然成立。所以由数学归纳法,命题成立。(4)反证法。例6设实数a0,a1,…,an满足a0=an=0,且a0-2a1+a2≥0,a1-2a2+a3≥0,…,an-2-2an-1+an≥0,求证ak≤0(k=1,2,…,n-1).【证明】假设ak(k=1,2,…,n-1)中至少有一个正数,不妨设ar是a1,a2,…,an-1中第一个出现的正数,则a1≤0,a2≤0,…,ar-1≤0,ar>0.于是ar-ar-1>0,依题设ak+1-ak≥ak-ak-1(k=1,2,…,n-1)。所以从k=r起有an-ak-1≥an-1-an-2≥…≥ar-ar-1>0.因为an≥ak-1≥…≥ar+1≥ar>0与an=0矛盾。故命题获证。(5)分类讨论法。例7已知x,y,z∈R+,求证:【证明】不妨设x≥y,x≥z.ⅰ)x≥y≥z,则,x2≥y2≥z2,由排序原理可得,原不等式成立。ⅱ)x≥z≥y,则,x2≥z2≥y2,由排序原理可得,原不等式成立。(6)放缩法,即要证A>B,可证A>C1,C1≥C2,…,Cn-1≥Cn,Cn>B(n∈N+).例8求证:【证明】,得证。例9已知a,b,c是△ABC的三条边长,m>0,求证:【证明】(因为a+b>c),得证。(7)引入参变量法。例10已知x,y∈R+,l,a,b为待定正数,求f(x,y)=的最小值。【解】设,则,f(x,y)=(a3+b3+3a2b+3ab2)=,等号当且仅当时成立。所以f(x,y)min=例11设x1≥x2≥x3≥x4≥2,x2+x3+x4≥x1,求证:(x1+x2+x3+x4)2≤4x1x2x3x4.【证明】设x1=k(x2+x3+x4),依题设有≤k≤1,x3x4≥4,原不等式等价于(1+k)2(x2+x3+x4)2≤4kx2x3x4(x2+x3+x4),即(x2+x3+x4)≤x2x3x4,因为f(k)=k+在上递减,所以(x2+x3+x4)=(x2+x3+x4)≤·3x2=4x2≤x...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学回归课本 不等式教案 旧人教版

海纳百川+ 关注
实名认证
内容提供者

热爱教学事业,对互联网知识分享很感兴趣

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部