12.2.2三角形全等的条件(2)(SAS)教学目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件,了解三角形的稳定性.4.能运用“SAS”证明简单的三角形全等问题.教学重点:1.会运用“边角边”公理证明三角形全等的简单问题2.分清用两边一角证明三角形相似和全等的不同。教学难点:1能运用“SAS”证明简单的三角形全等问题教学流程[中~@国&教育出#*版网]【导课】一、创设情境,复习提问1.怎样的两个三角形是全等三角形?2.全等三角形的性质?3.三角形全等的判定Ⅰ的内容是什么?【阅读质疑自主探究】1.如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO是否能完全重合呢?猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形.2.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取B、C,使AB=3.1cm,AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?3.边角边(简称“边角边”或“SAS”)符号语言:【多元互动合作探究】1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).例1已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.问题:如果把图3中的△ADC沿着CA方向平移到△ADF的位置(如图5),那么要证明△ADF≌△CEB,除了AD∥BC、AD=CB的条件外,还需要一个什么条件(AF=CE或AE=CF)?怎样证明呢?例2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.【训练检测目标探究】1.已知:如图,AB=AC,F、E分别是AB、AC的中点求证:△ABE≌△ACF.ABCDE2.已知:如图AB=AC,AD=AE,∠BAC=∠DAE求证:△ABD≌△ACE【迁移应用拓展探究】基础训练有关训练【布置作业】课本P69习题7.1第1、2、6、7题.