第3章第8课时(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题1.如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°,灯塔B在观察站C的南偏东60°,则灯塔A在灯塔B的()A.北偏东10°B.北偏西10°C.南偏东10°D.南偏西10°解析:由已知∠ACB=180°-40°-60°=80°,又AC=BC,∴∠A=∠ABC=50°,60°-50°=10°.∴灯塔A位于灯塔B的北偏西10°.答案:B2.在△ABC中,B=45°,C=60°,c=1,则最短边的边长是()A.B.C.D.解析:由=,得b===, B角最小,∴最小边是b.答案:A3.在△ABC中,角A,B均为锐角,且cosA>sinB,则△ABC的形状是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形解析:cosA=sin>sinB,-A,B都是锐角,则-A>B,A+B<,C>.答案:C4.一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°距塔68海里的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度为()A.海里/小时B.34海里/小时C.海里/小时D.34海里/小时解析:如图所示,在△PMN中,=,∴MN==34,∴v==(海里/小时).故选A.答案:A5.在△ABC中,角A,B,C所对的边长分别为a,b,c.若∠C=120°,c=a,则()A.a>bB.a<bC.a=bD.a与b的大小关系不能确定解析:在△ABC中,由余弦定理得c2=a2+b2-2abcos120°=a2+b2+ab.将c=a代入上式,得2a2=a2+b2+ab,从而a2=b2+ab.∴a2-b2=ab>0,∴a2>b2,∴a>b.答案:A6.某人在C点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10米到D,测得塔顶A的仰角为30°,则塔高为()A.15米B.5米C.10米D.12米解析:如图,设塔高为h,在Rt△AOC中,∠ACO=45°,则OC=OA=h.在Rt△AOD中,∠ADO=30°,则OD=h,在△OCD中,∠OCD=120°,CD=10,由余弦定理得:OD2=OC2+CD2-2OC·CDcos∠OCD,即(h)2=h2+102-2h×10×cos120°,∴h2-5h-50=0,解得h=10或h=-5(舍).答案:C二、填空题7.在直径为30m的圆形广场中央上空,设置一个照明光源,射向地面的光呈圆形,且其轴截面顶角为120°,若要光源恰好照亮整个广场,则光源的高度为________m.解析:轴截面如图,则光源高度h==5(m).答案:58“”.据新华社报道,强台风珍珠在广东饶平登陆.台风中心最大风力达到12级以上,大风、降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20米,则折断点与树干底部的距离是________米.解析:如图,设树干底部为O,树尖着地处为B,折断点为A,则∠ABO=45°,∠AOB=75°,∴∠OAB=60°.由正弦定理知,=,∴AO=(米).答案:9.在海岛A上有一座海拔1千米的山,山顶上有一个观察站P,上午11时,测得一轮船在岛的北偏东30°,俯角30°的B处,到11时10分又测得该船在岛的北偏西60°,俯角60°的C处,则轮船航行速度是________千米/小时.解析:由题意得∠PBA=30°,∠PCA=60°,∠BAC=60°+30°=90°,又PA=1千米,则AB=千米,AC=千米,所以BC=千米,则轮船航行的速度是=2千米/小时.答案:2三、解答题10.(·浙江台州一模)某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?【解析方法代码108001045】解析:在△BCD中,∠BDC=45°,∠CBD=30°,CD=10,由正弦定理,得BC==20;在Rt△ABC中,AB=BCsin60°=20×=30(米).所以升旗速度v===0.6(米/秒).11.如图,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cosθ的值.解析:如题中图所示,在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理知,BC2=AB2+AC2-2AB·AC·cos...