【数学精品】版《6年高考4年模拟》第十六章坐标系与参数方程第一部分六年高考荟萃年高考题1.[·天津卷]已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p=________.答案:2[解析]本题考查抛物线的参数方程及抛物线的性质,考查运算求解能力及转化思想,中档题.将参数方程化为普通方程为y2=2px(p>0),并且F,E,又 |EF|=|MF|=|ME|,即有3+=,解之得p=±2(负值舍去),即p=2.2.[·上海卷]如图1-1所示,在极坐标系中,过点M(2,0)的直线l与极轴的夹角α=,若将l的极坐标方程写成ρ=f(θ)的形式,则f(θ)=________.图1-1答案:[解析]考查极坐标方程,关键是写出直线的极坐标方程,再按要求化简.由已知得直线方程为y=(x-2)tan,化简得x-y-2=0,转化为极坐标方程为:ρcosθ-ρsinθ-2=0,解得ρ==,所以f(θ)=.3.[·陕西卷]直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为________.答案:[解析]本题考查了极坐标的相关知识,解题的突破口为把极坐标化为直角坐标.由2ρcosθ=1得2x=1①,由ρ=2cosθ得ρ2=2ρcosθ,即x2+y2=2x②,联立①②得y=±,所以弦长为.4.[·辽宁卷]在直角坐标系xOy.圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1,C2的极坐标方程,并求出圆C1,C2的交点坐标(用极坐标表示);(2)求圆C1与C2的公共弦的参数方程.解:(1)圆C1的极坐标方程为ρ=2,圆C2的极坐标方程为ρ=4cosθ.解得ρ=2,θ=±.故圆C1与圆C2交点的坐标为,.注:极坐标系下点的表示不唯一.(2)(解法一)由得圆C1与C2交点的直角坐标分别为(1,),(1,-).故圆C1与C2的公共弦的参数方程为≤-t≤.(或参数方程写成≤-y≤)(解法二)在直角坐标系下求得弦C1C2的方程为x=1(≤-y≤).将x=1代入得ρcosθ=1,从而ρ=.于是圆C1与C2≤的公共弦的参数方程为-θ≤.5.[·课标全国卷]已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为.(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.解:(1)由已知可得A2cos,2sin,B2cos+,2sin+,C2cos+π,2sin+π,D2cos+,2sin+,即A(1,),B(-,1),C(-1,-),D(,-1).(2)设P(2cosφ,3sinφ),令S=|PA|2+|PB|2+|PC|2+|PD|2,则S=16cos2φ+36sin2φ+16=32+20sin2φ.因为0≤sin2φ≤1,所以S的取值范围是[32,52].6.[·江苏卷]在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程.解:在ρsin=-中令θ=0,得ρ=1,所以圆C的圆心坐标为(1,0).因为圆C经过点P,所以圆C的半径PC==1,于是圆C过极点,所以圆C的极坐标方程为ρ=2cosθ.7.[·湖南卷]在直角坐标系xOy中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0)有一个公共点在x轴上,则a=________.答案:[解析]考查直线与椭圆的参数方程,此类问题的常规解法是把参数方程转化为普通方程求解,此题的关键是,得出两曲线在x轴上的一个公共点,即为曲线C1与x轴的交点,化难为易.曲线C1:(t为参数)的普通方程是2x+y-3=0,曲线C2的普通方程是+=1,两曲线在x轴上的一个公共点,即为曲线C1与x轴的交点,代入曲线C2,得+=1,解得a=.8.[·湖北卷]在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立坐标系.已知射线θ=与曲线(t为参数)相交于A,B两点,则线段AB的中点的直角坐标为________.答案:.[解析]曲线化为直角坐标方程是y=2,射线θ=化为直角坐标方程是y=x.联立消去y得x2-5x+4=0,解得x1=1,x2=4.所以y1=1,y2=4.故线段AB的中点的直角坐标为,即.9.[·福建卷]在平面直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),,圆C的参数方程为(θ为参数).(1)设P为线段MN的中点,求直线OP的平面直角坐标方程...