一次函数练习题带答案一次函数练习题带答案常见题型一次函数及其图像是初中代数的重要内容,也是高中解析几何的基石,更是中考的重点考查内容。其中求一次函数解析式就是一类常见题型。现以部分中考题为例介绍几种求一次函数解析式的常见题型。以下是一次函数练习题带答案,欢迎阅读。选择题1.已知一次函数,若随着的增大而减小,则该函数经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数,则阻值(A)>(B)<(C)=(D)以上均有可能4.若函数(为常数)那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A)(B)(C)(D)6.一次函数y=x+1在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y=xC.y=xD.y=x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式大致是()填空题1.若正比例函数y=mx(m≠0)和反比例函数y=(n≠0)都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数上,这个正比例函数的解析式是4.若函数经过点(1,2),则函数的表达式可能是(写出一个即可).5.表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它与y轴交于正半轴,则|a―1|+=。8.已知,一轮船在离A港10千米的P地出发,向B港匀速行驶,30分钟后离A港26千米(未到达B港),设出发x小时后,轮船离A港y千米(未到达B港),则y与x的函数关系式为解答题1.某产品每件成本10元,试销阶段每件产品的日销售价(元)与产品的日销售量(件)之间的关系如下表:(元)15202530…(件)25201510…⑴在草稿纸上描点,观察点的'颁布,建立与的恰当函数模型。⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?2.】李红和张明正在玩掷骰子游戏,两人各掷一枚骰子。⑴当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?⑵当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?如果不公平,请你提出一个对双方公平的意见。3.小明子在银行存入一笔零花钱,已知这种储蓄的年利率为n。若设到期后的本息和(本金+利息)为y(元),存入的时间为x(年),那么(1)下列那个更能反映y与x之间的函数关系?你能看出存入的本金是多少元?一年后的本息和是多少元?(2)根据(1)求出y于x的函数关系式(不要求写出自变量x的取值范围),并求出两年后的本息和。4.某商场的营业员小李销售某种商品,他的月收入与他该月的销售量成一次函数关...