4-1.4.1正弦、余弦函数的图象(1)教学目的:知识目标:(1)利用单位圆中的三角函数线作出Rxxy,sin的图象,明确图象的形状;(2)根据关系)2sin(cosxx,作出Rxxy,cos的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神;教学重点:用单位圆中的正弦线作正弦函数的图象;教学难点:作余弦函数的图象,周期性;授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:1.弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离r(02222yxyxr)则比值ry叫做的正弦记作:rysin比值rx叫做的余弦记作:rxcos3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有MPrysin,OMrxcos向线段MP叫做角α的正弦线,有向线段OM叫做角α的余弦线.二、讲解新课:用心爱心专心1ry)(x,P1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.(1)函数y=sinx的图象第一步:在直角坐标系的x轴上任取一点1O,以1O为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角6,0,3,2,…,2π的正弦线正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.-11x11x10x8x7x5x4x3x2x1M5M4M2M1P11P10P9P8P7P5P4P3P2P1P0P6o'x9Oyx根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.把角x()xR的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.用心爱心专心2-11x11x8x7x5x4x3x2x1M1o'x9P'MM'Po'Oyx(2)余弦函数y=cosx的图象用几何法作余弦函数的图象,可以用“反射法”将角x的余弦线“竖立”[把坐标轴向下平移,过1O作与x轴的正半轴成4角的直线,又过余弦线1OA的终点A作x轴的垂线,它与前面所作的直线交于A′,那么1OA与AA′长度相等且方向同时为正,我们就把余弦线1OA“竖立”起来成为AA′,用同样的方法,将其它的余弦线也都“竖立”起来.再将它们平移,使起点与x轴上相应的点x重合,则终点就是余弦函数图象上的点.]也可以用“旋转法”把角的余弦线“竖立”(把角x的余弦线O1M按逆时针方向旋转2到O1M1位置,则O1M1与O1M长度相等,方向相同.)根据诱导公式cossin()2xx,还可以把正弦函数x=sinx的图象向左平移2单位即得余弦函数y=cosx的图象.(课件第三页“平移曲线”)用心爱心专心3xo'''''yo'oyxy=cosxy=sinx23456--2-3-4-5-6-6-5-4-3-2-65432-11yx-11oxy正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0)(2,1)(,0)(23,-1)(2,0)余弦函数y=cosxx[0,2]的五个点关键是(0,1)(2,0)(,-1)(23,0)(2,1)只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点...