二元一次方程和一次函数(2)●教学目标(一)教学知识点1.通过举例使学生准确理解二元一次方程、二元一次方程组解的概念,并熟练地运用代入消元法、加减消元法、图象法解二元一次方程组.2.举出生活中用二元一次方程组解决问题的实例,抓住列二元一次方程组解决实际问题中的关键,找到相等关系,熟练地建模.3.进一步通过举例说明二元一次方程和一次函数的关系.(二)能力训练要求1.复习巩固解二元一次方程组的基本思想——消元,以及所体现出来的化归思想方法.2.通过列方程组解实际问题,提高分析和综合的能力.3.在理解二元一次方程和一次函数关系的同时,建立数学中的数形结合的思想.(三)情感与价值观要求本章是初中数学中对于培养价值观要求极为理想的教学内容——既有知识、技能,又可培养学生分析问题、解决问题的能力;既有传授数学思想、数学方法,又可对学生进行思想教育,提高学习积极性培养学生合作交流的意识,在交流和反思的过程中建立知识体系,体验学习数学的成就感.●教学重点1.二元一次方程组的三种解法——代入消元法、加减消元法、图象法.2.列二元一次方程组解决实际生活中的问题.3.二元一次方程和一次函数的关系.●教学难点1.列二元一次方程组解决实际生活中的问题.2.几种重要的数学思想——化归思想、方程思想和数形结合的思想等.●教学方法交流——讨论——反思的师生互动法.教学时,鼓励学生独立思考,自己回顾所学内容,并尝试回答教科书中提出的问题,对学生的回答,教师关注学生用自己语言解答的过程,关注学生运用例子说明自己对有关知识的理解.然后全班、小组交流、讨论,使学生在反思与交流的过程中建立本章的知识体系.●教具准备投影片两张:第一张:问题串(记作§7.7A);第二张:随堂练习(记作§7.7B).●教学过程Ⅰ.回顾与思考出示投影片(§7.7A)(1)举出生活中运用二元一次方程组解决问题的两个例子.(2)在列二元一次方程组解决实际问题的过程中,你认为最关键的是什么?(3)解二元一次方程组的基本思路是什么?有哪些方法?举例说明在什么情况下采用哪一种方法更为简便,并简要阐述解二元一次方程组的过程.(4)举例说明二元一次方程与一次函数有何关系.[师]同学们可根据以上四个问题,先思考,然后用自己的语言解答.[生]我举一个生活中运用二元一次方程组解决实际问题的例子:某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获得利润200元,求这批衬衫的进价是多少元?标价是多少元?[师]我们要用二元一次方程组来解决这个问题,首先我们要根据题意把这个实际问题转化成数学模型——二元一次方程组.同学们可先作思考,然后回答是如何解答的.[生]我认为在这个问题中首先要明白:利润=售价-进价.由此我们可找到两个相等关系:①当商店把20件衬衫买给甲顾客时的相等关系是(标价×70%-进价)×20=200;②当商店把5件衬衫买给乙顾客时的相等关系是(标价×80%-进价)×5=200.因此,我们可以设这批衬衫的进价为x元,标价为y元,根据题意,得化简方程组,得解得所以,这批衬衫进价是200元,标价是300元.[生]老师,我也有生活中的一个实例:某商店出售的某种茶壶每只定价20元,茶杯每只定价3元,该商店在营销淡季特规定一项优惠方法,即买一只茶壶赠送一只茶杯.我爸爸的单位里花了170元,买回茶壶和茶杯一共38只,问我爸的单位里买回茶壶和茶杯各多少只?[生]这道题是紧密结合实际问题,即买一送一.所以这个问题的解决首先要联系实际,结合生活经历去审题;其次要弄清数量关系,防止出现“脱离实际”“自以为是”的想法.下面针对这个实例同学们可展开讨论.[生]我认为在这个问题中,必须明白:在买回的茶杯中,有一些是商场赠送的,不需要花钱,而这个数目恰好是买回茶壶的数目.因此,可以设该单位买回茶壶x只,茶杯y只,根据题意,可找到两个相等关系:①茶壶只数+茶杯只数=38只②买茶壶的钱+买茶杯的钱=170元列方程组,得解得所以该单位买回茶壶4只,茶杯34只.[生]老师,我还有一种想法,可以间接设未知数,可设该单位买回茶壶x只,茶杯y只(不包括赠送的),可得解得x+y=34所以该单位总共买回茶壶4只...