电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第8课时——正、余弦定理的应用(2)(教师版)VIP免费

第8课时——正、余弦定理的应用(2)(教师版)_第1页
1/3
第8课时——正、余弦定理的应用(2)(教师版)_第2页
2/3
第8课时——正、余弦定理的应用(2)(教师版)_第3页
3/3
听课随笔第8课时正、余弦定理的应用(2)【学习导航】知识网络学习要求1.利用正弦定理和余弦定理解决有关测量问题时,要注意分清仰角、俯角、张角和方位角等概念。2.在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过这些三角形,得出实际问题的解。【课堂互动】自学评价运用正弦定理、余弦定理解决实际问题的基本步骤是:①分析:理解题意,弄清清与未知,画出示意图(一个或几个三角形);②建模:根据书籍条件与求解目标,把书籍量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;③求解:利用正弦定理、余弦定理理解这些三角形,求得数学模型的解;④检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解。【精典范例】【例1】作用在同一点的三个力平衡.已知,,与之间的夹角是,求的大小与方向(精确到).【解】应和合力平衡,所以和在同一直线上,并且大小相等,方向相反.如图1-3-3,在中,由余弦定理,得再由正弦定理,得,所以,从而.答为,与之间的夹角是.【例2】半圆的直径为,为直径延长线上的一点,,为半圆上任意一点,以为一边作等边三角形.问:点在什么位置时,四边形面积最大?分析:四边形的面积由点的位置唯一确定,而点由唯一确定,因此可设,再用的三角函数来表示四边形的面积.【解】设.在中,由余弦定理,得.于是,四边形的面积为.听课随笔因为,所以当时,,即时,四边形的面积最大.追踪训练一1.如图,用两根绳子牵引重为F1=100N的物体,两根绳子拉力分别为F2,F3,保持平衡.如果F2=80N,F2与F3夹角α=135°.(1)求F3的大小(精确到1N);(2)求F3与F1的夹角β的值(精确到0.1°).答案:(1)(2)2.从200m高的电视塔顶A测得地面上某两点B,C的俯角分别为30°和45°,∠BAC=45°,求这两个点之间的距离.答案:3.在△ABC中,若,B=450,△ABC的面积为2,那么,△ABC的外接圆直径为【选修延伸】【例3】中,若已知三边为连续正整数,最大角为钝角,①求最大角的余弦值;②求以此最大角为内角,夹此角两边之和为4的平行四边形的最大面积.【解】①设三边,且,∵为钝角,∴,解得,∵,∴或,但时不能构成三角形应舍去,当时,;②设夹角的两边为,,所以,,当时,.追踪训练二1.我国潜艇外出执行任务,在向正东方向航行时,测得某国的雷达站在潜艇的东偏北300方向的100nmile处,已知该国的雷达扫描半径为70nmile,若我国潜艇不改变航向,则行驶多少路程后会有暴露目标?(B)A50BCD2.在△ABC中,若,则与的大小关系是(A)A大于B大于等于C小于D小于等于解:3.两艘快艇在水面上一前一后前进,后一艘快艇的速度是前一艘的两倍,前一艘快艇突然向与原前进方向成300角行驶,若后一快艇需想在最短的时间内赶上前艇,则它行驶的方向应与原方向的夹角为【师生互动】学生质疑教师释疑

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第8课时——正、余弦定理的应用(2)(教师版)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部