课题:§3.2一元二次不等式及其解法第2课时授课类型:新授课【教学目标】1.知识与技能:巩固一元二次方程、一元二次不等式与二次函数的关系;进一步熟练解一元二次不等式的解法;2.过程与方法:培养数形结合的能力,一题多解的能力,培养抽象概括能力和逻辑思维能力;3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会从不同侧面观察同一事物思想【教学重点】熟练掌握一元二次不等式的解法【教学难点】理解一元二次不等式与一元二次方程、二次函数的关系【教学过程】1.课题导入1.一元二次方程、一元二次不等式与二次函数的关系2.一元二次不等式的解法步骤——课本第86页的表格2.讲授新课[范例讲解]例1某种牌号的汽车在水泥路面上的刹车距离sm和汽车的速度xkm/h有如下的关系:在一次交通事故中,测得这种车的刹车距离大于39.5m,那么这辆汽车刹车前的速度是多少?(精确到0.01km/h)解:设这辆汽车刹车前的速度至少为xkm/h,根据题意,我们得到移项整理得:显然,方程有两个实数根,即。所以不等式的解集为在这个实际问题中,x>0,所以这辆汽车刹车前的车速至少为79.94km/h.例4、一个汽车制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(辆)与创造的价值y(元)之间有如下的关系:若这家工厂希望在一个星期内利用这条流水线创收6000元以上,那么它在一个星期内大约应该生产多少辆摩托车?解:设在一个星期内大约应该生产x辆摩托车,根据题意,我们得到移项整理,得1因为,所以方程有两个实数根由二次函数的图象,得不等式的解为:50