第八章直线和圆的方程高考导航考试要求重难点击命题展望1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.2.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.3.能根据两条直线的斜率判定这两条直线平行或垂直.4.掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.5.掌握用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行线间的距离.7.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.8.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系.9.能用直线和圆的方程解决简单的问题.10.初步了解用代数方法处理几何问题的思想.11.了解空间直角坐标系,会用空间直角坐标表示点的位置,会推导空间两点间的距离公式.本章重点:1.倾斜角和斜率的概念;2.根据斜率判定两条直线平行与垂直;3.直线的点斜式方程、一般式方程;4.两条直线的交点坐标;5.点到直线的距离和两条平行直线间的距离的求法;6.圆的标准方程与一般方程;7.能根据给定直线,圆的方程,判断直线与圆的位置关系;8.运用数形结合的思想和代数方法解决几何问题.本章难点:1.直线的斜率与它的倾斜角之间的关系;2.根据斜率判定两条直线的位置关系;3.直线方程的应用;4.点到直线的距离公式的推导;5.圆的方程的应用;6.直线与圆的方程的综合应用.本章内容常常与不等式、函数、向量、圆锥曲线等知识结合起来考查.直线和圆的考查,一般以选择题、填空题的形式出现,属于容易题和中档题;如果和圆锥曲线一起考查,难度比较大.同时,对空间直角坐标系的考查难度不大,一般为选择题或者填空题.本章知识点的考查侧重考学生的综合分析问题、解决问题的能力,以及函数思想和数形结合的能力等.1知识网络8.1直线与方程典例精析题型一直线的倾斜角【例1】直线2xcosα-y-3=0,α∈[,]的倾斜角的变化范围是()A.[,]B.[,]C.[,]D.[,]【解析】直线2xcosα-y-3=0的斜率k=2cosα,由于α∈[,],所以≤cosα≤,k=2cosα∈[1,].设直线的倾斜角为θ,则有tanθ∈[1,],由于θ∈[0,π),所以θ∈[,],即倾斜角的变化范围是[,],故选B.【点拨】利用斜率求倾斜角时,要注意倾斜角的范围.【变式训练1】已知M(2m+3,m),N(m-2,1),当m∈时,直线MN的倾斜角为锐角;当m=时,直线MN的倾斜角为直角;当m∈时,直线MN的倾斜角为钝角.【解析】直线MN的倾斜角为锐角时,k==>0⇒m<-5或m>1;直线MN的倾斜角为直角时,2m+3=m-2⇒m=-5;直线MN的倾斜角为钝角时,k==<0⇒-5<m<1.题型二直线的斜率【例2】已知A(-1,-5),B(3,-2),直线l的倾斜角是直线AB的倾斜角的2倍,求直线l的斜率.【解析】由于A(-1,-5),B(3,-2),所以kAB==,设直线AB的倾斜角为θ,则tanθ=,l的倾斜角为2θ,tan2θ===.所以直线l的斜率为.【点拨】直线的倾斜角和斜率是最重要的两个概念,应熟练地掌握这两个概念,扎实地记住计算公式,倾斜角往往会和三角函数的有关知识联系在一起.【变式训练2】设α是直线l的倾斜角,且有sinα+cosα=,则直线l的斜率为()A.B.C.-D.-或-【解析】选C.sinα+cosα=⇒sinαcosα=-<0⇒sinα=,cosα=-或cosα=,sinα=-(舍去),故直线l的斜率k=tanα==-.题型三直线的方程2【例3】求满足下列条件的直线方程.(1)直线过点(3,2),且在两坐标轴上截距相等;(2)直线过点(2,1),且原点到直线的距离为2.【解析】(1)当截距为0时,直线过原点,直线方程是2x-3y=0;当截距不为0时,设方程为+=1,把(3,2)代入,得a=5,直线方程为x+y-5=0.故所求直线方程为2x-3y=0或x+y-5=0.(2)当斜率不存在时,直线方程x-2=0合题意;当斜率存在时,则设直线方程为y-1=k(x-2),即kx-y+1-2k=0,所以=2,解得k=-,方程为3x+4y-10=0.故所求直线方程为x-2=0或3x+4y-10=0.【点拨】截距可以为0,斜率也可以不存在,故均需分情况讨论.【变式训练3】求经过点P(3,-4),且横、纵截距互为相反数的直线方程.【解析】当横、纵截距都是0时,...