“杨辉三角”与二项式系数的性质1.内容和内容解析《“杨辉三角”与二项式系数的性质》是全日制普通高级中学教科书人教A版选修2-3第1章第3节第2课时.教科书将二项式系数性质的讨论与“杨辉三角”结合起来,是因为“杨辉三角”蕴含了丰富的内容,由它可以直观看出二项式系数的性质,“杨辉三角”是我国古代数学重要成就之一,显示了我国古代人民的卓越智慧和才能,应抓住这一题材,对学生进行爱国主义教育,激励学生的民族自豪感.本节内容以前面学习的二项式定理为基础,由于二项式系数组成的数列就是一个离散函数,引导学生从函数的角度研究二项式系数的性质,便于建立知识的前后联系,使学生体会用函数知识研究问题的方法,可以画出它的图象,利用几何直观、数形结合、特殊到一般的数学思想方法进行思考,这对发现规律,形成证明思路等都有好处.这一过程不仅有利于培养学生的思维能力、理性精神和实践能力;也有利于学生理解数学知识,培养其数学应用意识.研究二项式系数这组特定的组合数的性质,对巩固二项式定理,建立相关知识之间的联系,进一步认识组合数、进行组合数的计算和变形都有重要的作用,对后续学习微分方程等也具有重要地位.根据以上对教材及学情的分析,特制定教学重点如下:体会用函数知识研究问题的方法,理解二项式系数的性质.2.教学目标分析“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,了解我国古代数学成就之一的“杨辉三角”包含的规律,结合“杨辉三角”,运用函数的知识深化对二项式系数性质的理解,联系函数图象和性质、赋值法、两个计数原理等知识探究证明二项式系数的性质,体会用函数知识研究问题的方法,体验数形结合、特殊到一般进行归纳等数学思想的渗透和运用,体现教师引导、学生探究的教学方式,培养学生问题意识,提高数学思维能力,培育学生理性精神.根据以上分析特制定教学目标如下:1.通过课前组织学生开展“了解杨辉三角、探究与发现杨辉三角包含的规律”的学习活动,让学生感受我国古代数学成就及其数学美,激发学生的民族自豪感.2.通过学生从函数的角度研究二项式系数的性质,建立知识的前后联系,体会用函数知识研究问题的方法,培养学生的观察能力和归纳推理能力.3.通过体验“发现规律、寻找联系、探究证明、性质运用”的学习过程,使学生掌握二项式系数的一些性质,体会应用数形结合、特殊到一般进行归纳、赋值法等重要数学思想方法解决用心爱心专心1问题的“再创造”过程.4.通过恰时恰点的问题引入、引申,采用学生课前自主探究、课上合作探究、课下延伸探究的学习方式,培养学生问题意识,提高学生思维能力,孕育学生创新精神,激发学生探索、研究我国古代数学的热情.3.教学问题诊断分析教科书将二项式系数性质的讨论与“杨辉三角”结合起来,不仅是因为“杨辉三角”是我国古代数学重要成就之一,蕴含了丰富的内容,显示了我国古代人民的卓越智慧和才能,对学生进行爱国主义教育,激励学生的民族自豪感,而且“杨辉三角”与二项式系数的性质紧密相联,由它可以直观的看出二项式系数的性质,同时课程体系在本节课后编排了关于探究与发现“杨辉三角”中的奥妙的阅读材料,为了凸现数学史教学,更好的掌握本节知识,促进学生发展,在高中学生学习的各个领域渗透研究性学习,因此对教材内容进行了精心加工,合理调整,课前开展了探究与发现“杨辉三角”的一些规律的学习活动,课上进行展示.学生不难发现和概括二项式系数的对称性和增减性与最大值,如何证明呢?这就需要适当引导学生联系函数知识,画出6n和7的函数图象,讨论函数的性质,让学生经历再发现、再提炼、深入探究的学习过程,培育理性思维.在证明各二项式系数的和的过程中,教材中运用赋值法,求证很简略,但是让学生记住这个结论并不难,难的是在这个学习过程中如何遵循学生的认知规律,提高学生的思维能力?基于此,让学生自己归纳、猜想各二项式系数的和,运用多种方法予以求证,如:(1)利用赋值法:在.0122(1)CCCCCnrrnnnnnnnxxxxx中,令1x可得;(2)利用模型化思想:引入n元集合...