电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学指数函数及其性质教案1VIP免费

高中数学指数函数及其性质教案1_第1页
1/6
高中数学指数函数及其性质教案1_第2页
2/6
高中数学指数函数及其性质教案1_第3页
3/6
指数函数及其性质1三维目标一、知识与技能1.掌握指数函数的概念、图象和性质.2.能借助计算机或计算器画指数函数的图象.3.能由指数函数图象探索并理解指数函数的性质.二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等.2.通过探讨指数函数的底数a>0,且a≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人.三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣,体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识.2.在教学过程中,通过现代信息技术的合理应用,让学生体会到现代信息技术是认识世界的有效手段.教学重点指数函数的概念和性质.教学难点用数形结合的方法从具体到一般地探索、概括指数函数的性质.教具准备多媒体课件、投影仪、打印好的作业.教学过程一、以生活实例,引入新课(多媒体显示如下材料)材料1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x的函数关系是什么?(生思考,师组织学生交流各自的想法,捕捉学生交流中与下列结论有关的信息,并简单板书)结论:材料1中y和x的关系为y=2x.材料2:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系,这个关系式应该怎样表示呢?(生思考)生:P=().师:你能发现关系式y=2x,P=()有什么相同的地方吗?(生讨论,师及时总结得到如下结论)我们发现:在关系式y=2x和P=()中,每给一个自变量都有唯一的一个函数值和它对应,因此关系式y=2x和P=()都是函数关系式,且函数y=2x和函数P=()在形式上是相同的,解析式的右边都是指数式,且自变量都在指数位置上.师:你能从以上两个解析式中抽象出一个更具有一般性的函数模型吗?(生交流,师总结得出如下结论)用心爱心专心116号编辑生:用字母a来代替2与().结论:函数y=2x和函数P=()都是函数y=ax的具体形式.函数y=ax是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数.(引入新课,书写课题)二、讲解新课(一)指数函数的概念(师结合引入,给出指数函数的定义)一般地,函数y=ax(a>0,a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.合作探究:(1)定义域为什么是实数集?(生思考,师适时点拨,给出如下解释)知识拓展:在a>0的前提下,x可以取任意的实数,所以函数的定义域是R.(2)在函数解析式y=ax中为什么要规定a>0,a≠1?(生思考,师适时点拨,给出如下解释,并明确指数函数的定义域是实数R)知识拓展:这是因为(ⅰ)a=0时,当x>0,ax恒等于0;当x≤0,ax无意义.(ⅱ)a<0时,例如a=-,x=-,则ax=(-)无意义.(ⅲ)a=1时,ax恒等于1,无研究价值.所以规定a>0,且a≠1.(3)判断下列函数是否是指数函数:①y=2·3x;②y=3x-1;③y=x3;④y=-3x;⑤y=(-4)x;⑥y=πx;⑦y=4;⑧y=xx;⑨y=(2a-1)x(a>,且a≠1).生:只有⑥⑨为指数函数.方法引导:指数函数的形式就是y=ax,ax的系数是1,其他的位置不能有其他的系数,但要注意化简以后的形式.有些函数貌似指数函数,实际上却不是,例如y=ax+k(a>0,且a≠1,k∈Z);有些函数看起来不像指数函数,实际上却是指数函数,例如y=a-x(a>0,且a≠1),这是因为它的解析式可以等价化归为y=a-x=(a-1)x,其中a-1>0,且a-1≠1.如y=23x是指数函数,因为可以化简为y=8x.要注意幂底数的范围和自变量x所在的部位,即指数函数的自变量在指数位置上.(二)指数函数的图象和性质师:指数函数y=ax,其中底数a是常数,指数x是自变量,幂y是函数.底数a有无穷多个取值,不可能逐一研究,研究方法是什么呢?(生思考)师:要抓住典型的指数函数,分析典型,进而推广到一般的指数函数中去.那么选谁作典型呢?生:函数y=2x的图象.用心爱心专心116号编辑师:作图的基本方法是什么?生:...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学指数函数及其性质教案1

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部