电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学《两角差的余弦公式》教案3 新人教A版必修4VIP免费

高中数学《两角差的余弦公式》教案3 新人教A版必修4_第1页
1/2
高中数学《两角差的余弦公式》教案3 新人教A版必修4_第2页
2/2
3.1.1两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.二、教学重、难点1.教学重点:通过探索得到两角差的余弦公式;2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.三、学法与教学用具1.学法:启发式教学2.教学用具:多媒体四、教学设想:(一)导入:我们在初中时就知道2cos452,3cos302,由此我们能否得到cos15cos4530?大家可以猜想,是不是等于cos45cos30呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式cos?(二)探讨过程:在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为1P,cos等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索cos与cos、cos、sin、sin之间的关系,由此得到cos()coscossinsin,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件用心爱心专心1比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.思考:cos?,coscos,再利用两角差的余弦公式得出coscoscoscossinsincoscossinsin(三)例题讲解例1、利用和、差角余弦公式求cos75、cos15的值.解:分析:把75、15构造成两个特殊角的和、差.232162cos75cos4530cos45cos30sin45sin3022224232162cos15cos4530cos45cos30sin45sin3022224点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:cos15cos6045,要学会灵活运用.例2、已知4sin5,5,,cos,213是第三象限角,求cos的值.解:因为,2,4sin5由此得2243cos1sin155又因为5cos,13是第三象限角,所以22512sin1cos11313所以3541233cos()coscossinsin51351365点评:注意角、的象限,也就是符号问题.(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.(五)作业:15012.PTT用心爱心专心2

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学《两角差的余弦公式》教案3 新人教A版必修4

您可能关注的文档

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部