1.1基本计数原理(第二课时)教学目标:会利用两个原理分析和解决一些简单的应用问题教学重点:会利用两个原理分析和解决一些简单的应用问题教学过程一、复习引入:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有nk种方法可以完成。那么,完成这件工作共有n1+n2+……+nk种不同的方法。2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有nK种不同的方法。那么,完成这件工作共有n1×n2×……×nk种不同方法二、讲解新课:例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?例2在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种?解:取ba与取ab是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法.例3如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()A.180B.160C.96D.60奎屯王新敞新疆若变为图二,图三呢?(240种,5×4×4×4=320种)例575600有多少个正约数?有多少个奇约数?解:75600的约数就是能整除75600的整数,所以本题就是分别求能整除75600的整数和奇约数的个数.由于75600=24×33×52×7(1)75600的每个约数都可以写成lkjl7532的形式,其中40i,30j,20k,10l1①③④②①②③④④③②①图一图二图三于是,要确定75600的一个约数,可分四步完成,即lkji,,,分别在各自的范围内任取一个值,这样i有5种取法,j有4种取法,k有3种取法,l有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.(2)奇约数中步不含有2的因数,因此75600的每个奇约数都可以写成lkj753的形式,同上奇约数的个数为4×3×2=24个.课堂小节:本节课学习了两个重要的计数原理的应用课堂练习:课后作业:2