1.4充分条件与必要条件考点学习目标核心素养充分条件、必要条件的概念理解充分条件、必要条件、充要条件的概念数学抽象充分条件、必要条件的判断结合具体命题掌握判断充分条件、必要条件、充要条件的方法逻辑推理充分条件、必要条件的应用掌握证明充要条件的一般方法逻辑推理问题导学预习教材P17-P22,并思考以下问题:1.什么是充分条件?2.什么是必要条件?3.什么是充要条件?1.充分条件与必要条件命题真假“若p,则q”为真命题“若p,则q”为假命题推出关系p⇒qp⇒q条件关系p是q的充分条件q是p的必要条件p不是q的充分条件q不是p的必要条件■名师点拨对于“p⇒q”,蕴含以下多种解释(1)“若p,则q”形式的命题为真命题.(2)由条件p可以得到结论q.(3)p是q的充分条件或q的充分条件是p.(4)只要有条件p,就一定有结论q,即p对于q是充分的.(5)q是p的必要条件或p的必要条件是q.(6)为得到结论q,具备条件p就可以推出.显然,“p是q的充分条件”与“q是p的必要条件”表述的是同一个逻辑关系,即p⇒q,只是说法不同.[提醒]不能将“若p,则q”与“p⇒q”混为一谈,只有“若p,则q”为真命题时,才有“p⇒q”,即“p⇒q”⇔“若p,则q”为真命题.2.充要条件如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q.此时,p既是q的充分条件,也是q的必要条件,我们说p是q的充分必要条件,简称为充要条件.■名师点拨(1)p是q的充要条件意味着“p成立,则q一定成立;p不成立,则q一定不成立”.(2)要判断p是不是q的充要条件,需要进行两次判断:一是看p能否推出q,二是看q能否推出p.若p能推出q,q也能推出p,就可以说p是q的充要条件,否则,就不能说p是q的充1要条件.(3)对充分条件和必要条件的进一步划分:条件p与结论q的关系结论p⇒q,且q⇒pp是q的充分不必要条件q⇒p,且p⇒qp是q的必要不充分条件p⇒q,且q⇒p,即p⇔qp是q的充要条件p⇒q,且q⇒pp是q的既不充分也不必要条件判断正误(正确的打“√”,错误的打“×”)(1)“x=0”是“(2x-1)x=0”的充分不必要条件.()(2)q是p的必要条件时,p是q的充分条件.()(3)若p是q的充要条件,则命题p和q是两个相互等价的命题.()(4)q不是p的必要条件时,“p⇒q”成立.()答案:(1)√(2)√(3)√(4)√设p:“四边形为菱形”,q:“四边形的对角线互相垂直”,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.若四边形为菱形,则该四边形的对角线互相垂直,即p⇒q;反之,当四边形的对角线互相垂直时,该四边形不一定是菱形,故q⇒p,所以p是q的充分不必要条件.设p:x<3,q:-1<x<3,则p是q成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:选C.因为{x|x<3},所以p是q成立的必要不充分条件.设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D.若a+b>0,取a=3,b=-2,则ab>0不成立;反之,若ab>0,取a=-2,b=-3,则a+b>0也不成立,因此“a+b>0”是“ab>0”的既不充分也不必要条件.“ac=bc”是“a=b”的________条件.解析:若ac=bc,当c=0时不一定有a=b;反之若a=b,则有ac=bc成立.故ac=bc是a=b的必要不充分条件.答案:必要不充分充分、必要、充要条件的判断下列各题中,p是q的什么条件?(指充分不必要、必要不充分、充要、既不充分也不必要条件)2(1)p:x=1或x=2,q:x-1=;(2)p:四边形是正方形,q:四边形的对角线互相垂直平分;(3)p:xy>0,q:x>0,y>0.(4)p:四边形的对角线相等,q:四边形是平行四边形.【解】(1)因为x=1或x=2⇒x-1=,x-1=⇒x=1或x=2,所以p是q的充要条件.(2)若一个四边形是正方形,则它的对角线互相垂直平分,即p⇒q.反之,若四边形的对角线互相垂直平分,该四边形不一定是正方形,即q⇒p.所以p是q的充分不必要条件.(3)因为xy>0时,x>0,y>0或x<0,y<0.故p⇒q,但q⇒p.所以p是q的必要不充分条件.(4)因为所以p是q的既不充分也不必要条件.充分、必要、充要条件的判断方法(1)...