电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 计数原理 1.2 排列与组合 1.2.6 简单的计数问题教案 新人教B版选修2-3-新人教B版高二选修2-3数学教案VIP免费

高中数学 第一章 计数原理 1.2 排列与组合 1.2.6 简单的计数问题教案 新人教B版选修2-3-新人教B版高二选修2-3数学教案_第1页
1/3
高中数学 第一章 计数原理 1.2 排列与组合 1.2.6 简单的计数问题教案 新人教B版选修2-3-新人教B版高二选修2-3数学教案_第2页
2/3
高中数学 第一章 计数原理 1.2 排列与组合 1.2.6 简单的计数问题教案 新人教B版选修2-3-新人教B版高二选修2-3数学教案_第3页
3/3
1.2.6简单的计数问题一、教学目标(1)掌握排列组合一些常见的题型及解题方法,能够运用两个原理及排列组合概念解决排列组合问题;(2)提高合理选用知识解决问题的能力.二、教学重点,难点排列、组合综合问题.三、教学过程典例分析例1.2名女生,4名男生排成一排.(1)2名女生相邻的不同排法共有多少种?(2)2名女生不相邻的不同排法共有多少种?(3)女生甲必须排在女生乙的左边(不一定相邻)的不同排法共有多少种?解:(1)“捆绑法”:将2名女生看成一个元素,与4名男生共5个元素排成一排,共有种排法,又因为2名相邻女生有种排法,因此不同的排法种数是.(2)方法一:(插空法)分两步完成:第一步,将4名男生排成一排,有种排法;第二步,排2名女生.由于2名女生不相邻,故可在4名男生之间及两端的5个位置中选出2个排2名女生,有种排法.根据分步计数原理,不同的排法种数是种.(3)方法一:(特殊元素优先考虑)分2步完成:第一步,排2名女生.由于女生顺序已定,故可从6个位置中选出2个位置,即;第二步,排4名男生.将4名男生排在剩下的4个位置上,有种方法.根据分步计数原理,不同的排法种数是.方法二:(除法)如果将6名学生全排列,共有种排法.其中,在男生位置确定之后,女生的排法数有种,因为女生的顺序已定,所以在这中排法中,只有一种符合要求,故符合要求的排法数为种.例2.高二(1)班有30名男生,20名女生,从50名学生中3名男生,2名女生分别担任班长、副班长、学习委员、文娱委员、体育委员,共有多少种不同的选法?说明:排列、组合综合问题通常遵循“先组合后排列”的原则.例3.某考生打算从所重点大学中选所填在第一档次的个志愿栏内,其中校定为第一志愿;再从所一般大学中选所填在第二档次的三个志愿栏内,其中、两校必选,且在前.问:此考生共有多少种不同的填表方法?例4.有只不同的试验产品,其中有只次品,只正品,现每次取一只测试,直到只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?四、课堂小结1、解决有关计数的应用题时,要仔细分析事件的发生、发展过程,弄清问题究竟是排列问题还是组合问题,还是应直接利用分类计数原理或分步计数原理解决.一个较复杂的问题往往是分类与分步交织在一起,要准确分清,容易产生的错误是遗漏和重复计数;2、解决计数问题的常用策略有:(1)特殊元素优先安排;(2)排列组合混合题要先选(组合)后排;(3)相邻问题捆绑处理(先整体后局部);(4)不相邻问题插空处理;(5)顺序一定问题除法处理;(6)正难则反,合理转化.五、课堂练习1.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?2.有3张都标着字母A,6张分别标着数字1,2,3,4,5,6的卡片,若任取其中5张卡片组成牌号,求可以组成的不同牌号的总数.

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 计数原理 1.2 排列与组合 1.2.6 简单的计数问题教案 新人教B版选修2-3-新人教B版高二选修2-3数学教案

您可能关注的文档

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部