1.4全称量词与存在量词第2课时量词否定教学目标:利用日常生活中的例子和数学的命题介绍对量词命题的否定,使学生进一步理解全称量词、存在量词的作用.教学重点:全称量词与存在量词命题间的转化;教学难点:隐蔽性否定命题的确定;导学过程学习体会一自主导航问题1:指出下列命题的形式,写出下列命题的否定。(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)xR,x2-2x+1≥0问题2:写出命题的否定(1)p:$x∈R,x2+2x+2≤0;(2)p:有的三角形是等边三角形;(3)p:存在一个四边形,它的对角线互相垂直且平分;二、合作探究例1写出下列全称命题的否定:(1)p:所有人都晨练;(2)p:xR,x2+x+1>0;(3)p:平行四边形的对边相等;(4)p:$x∈R,x2-x+1=0;例2写出下列命题的否定。(1)所有自然数的平方是正数。(2)任何实数x都是方程5x-12=0的根。(3)对任意实数x,存在实数y,使x+y>0.(4)有些质数是奇数。1例3写出下列命题的否定。(1)若x2>4则x>2.。(2)若m≥0,则x2+x-m=0有实数根。(3)可以被5整除的整数,末位是0。(4)被8整除的数能被4整除。(5)若一个四边形是正方形,则它的四条边相等。例4写出下列命题的非命题与否命题,并判断其真假性。(1)p:若x>y,则5x>5y;(2)p:若x2+x﹤2,则x2-x﹤2;(3)p:正方形的四条边相等;(4)p:已知a,b为实数,若x2+ax+b≤0有非空实解集,则a2-4b≥0。三、课堂小结四、巩固练习1.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A.存在实数m,使得方程x2+mx+1=0无实根;B.不存在实数m,使得方程x2+mx+1=0有实根;C.对任意的实数m,使得方程x2+mx+1=0有实根;D.至多有一个实数m,使得方程x2+mx+1=0有实根;2.命题“xR,x2-x+3>0”的否定是3.“末位数字是0或5的整数能被5整除”的否定形式是否命题是4.写出下列命题的否定,并判断其真假:(1)p:m∈R,方程x2+x-m=0必有实根;2(2)q:$R,使得x2+x+1≤0;5.写出下列命题的“非P”命题,并判断其真假:(1)若m>1,则方程x2-2x+m=0有实数根.(2)平方和为0的两个实数都为0.(3)若ABC是锐角三角形,则ABC的任何一个内角是锐角.(4)若abc=0,则a,b,c中至少有一为0.(5)若(x-1)(x-2)=0,则x≠1,x≠2.3