1P591(1).用谓词公式表达语句“所有的运动员都钦佩某些教练”,个体域为全总个体域。解:P(x):x是运动员,G(y):y是教练,R(x,y):x钦佩y。原题量词表达为:x(P(x)y(R(x,y)G(y)))此题错误较多:1.xyR(P(x),G(y))2.xy(P(x)G(y)R(x,y))3.R(x):x钦佩某些教练3.将x(C(x)y(C(y)F(x,y)))翻译成汉语,其中C(x)表示x有电脑,F(x,y)表示x和y是同班同学,个体域是学校全体学生的集合。解:学校的全体学生要么自己有电脑,要么其同班同学有电脑。80%能正确解释。5.给定解释I如下:个体域D:{-2,3,6};个体常元a:6;谓词P:2>1,Q(x):x3,R(x):x>5。求出谓词公式x(PQ(x))R(a)在解释I下的真值。解:R(a)总为1,故x(PQ(x))R(a)为x(PQ(x))1=1都能做对最后答案。有的学生将D的每个元素代入求得,有的学生做法如上。9(2).指出谓词公式xy(P(x,y)Q(y,z))xR(x,y)的指导变元、量词的辖域、约束变元和自由变元。解:第一个x是指导变元,相应的辖域是y(P(x,y)Q(y,z));第二、四个x是约束变元;第三个x是指导变元,相应的辖域是R(x,y);第一个y是指导变元,相应的辖域是:(P(x,y)Q(y,z));第二,三个y是约束变元;第四个y是自由变元;第一个z是自由变元。即:指导变元:第一个x,第三个x,第一个y辖域:y(P(x,y)Q(y,z)),R(x,y),(P(x,y)Q(y,z))约束变元:第二个x,第四个x,第二个y,第三个y自由变元:第四个y,第一个z约一半学生错在第一个X为指导变元时的辖域,错写为(P(x,y)Q(y,z)),其余的正确。10(1).求谓词公式xy(P(x,y)Q(x,y))xyR(x,y)的前束范式。解:xy(P(x,y)Q(x,y))xyR(x,y)=xy(P(x,y)Q(x,y))uvR(u,v)=xy(P(x,y)Q(x,y)(Q(x,y)P(x,y))uvR(u,v)=xy(((P(x,y)Q(x,y))(Q(x,y)P(x,y))uvR(u,v))=xyuv((P(x,y)Q(x,y))(Q(x,y)P(x,y))R(u,v))三分之一的学生出错。1.不化简2.没有改变相同的量词,并将相同的量词合并。3.计算错误。11.构造x(P(x)Q(x)),x(Q(x)R(x)),xR(x)xP(x)的形式证明。2解:①xR(x)前提引入②R(e)①US规则③x(Q(x)R(x))前提引入④Q(e)R(e)③US规则⑤Q(e)②④析取三段论⑥x(P(x)Q(x))前提引入⑦P(e)Q(e)⑥US规则⑧P(e)⑤⑦析取三段论⑨x(P(x))⑧EG规则此题出错较多:1.误用量词的推理规则,如①xR(x)前提引入②R(x)①US规则2.形式证明的格式不规范15.证明下面的推理:“每个科研工作者都是努力工作的。每个努力工作而又聪明的人都取得事业的成功。某个人是科研工作者并且聪明。所以,某人事业取得成功。”解:命题符号化,个体域为人。定义谓词P(x):x是科研工作者,Q(x):x努力工作,R(x):x是聪明的人,M(x):x事业取得成功.前提:x(P(x)Q(x)),x((Q(x)R(x))M(x)),x(P(x)R(x))结论:xM(x)构造形式证明①x(P(x)R(x))前提引入②P(a)R(a)①ES规则③P(a)②化简规则④x(P(x)Q(x))前提引入⑤P(a)Q(a)④US规则⑥Q(a)③⑤假言推理规则⑦R(a)Q(a)③附加规则⑧x((Q(x)R(x))M(x))前提引入⑨(Q(a)R(a))M(a)⑧US规则⑩M(a)⑦⑨假言推理规则⑪xM(x)⑩EG规则基本正确补充:1.用谓词公式表达语句“本班的学生都已学过微积分”,个体域分别取ECNU的学生集合和本班的学生集合。解:个体域取ECNU的学生集合:P(x):x是本班学生,G(x):x学过微积分。则x(P(x)G(x))个体域取本班的学生集合:P(x):x学过微积分,则xP(x)个体域取ECNU的学生集合时出错较多:H(x):X是ECNU的学生x(h(x)G(x))32.用谓词公式表达语句“班上无人恰给另外两个同班同学发过电子邮件”,个体域取本班学生的集合。解:p(x,y):x给y发过电子邮件,论域为班上学生。原题量词表达为:xyz(p(x,y)p(x,z)(y≠z)(x≠z)(x≠y)w(p(x,w)((w=y)(w=z))))正确解答此题的学生很少。大都只表达了“给另个两个同学发过电子邮件”,忽略“恰恰”。P812.集合X={a,b,c}上的一个关系R的关系矩阵如下(左),请写出这个关系。(注:矩阵的第1、2、3行以及第...