电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数讲义 新人教A版选修2-2-新人教A版高二选修2-2数学教案VIP免费

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数讲义 新人教A版选修2-2-新人教A版高二选修2-2数学教案_第1页
1/6
高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数讲义 新人教A版选修2-2-新人教A版高二选修2-2数学教案_第2页
2/6
高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数讲义 新人教A版选修2-2-新人教A版高二选修2-2数学教案_第3页
3/6
1.3.3函数的最大(小)值与导数1.函数f(x)在闭区间[a,b]上的最值如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,则该函数在[a,b]上一定能够取得□最大值和□最小值,并且函数的最值必在极值点或区间端点取得.2.求函数y=f(x)在[a,b]上的最值的步骤(1)求函数y=f(x)在(a,b)内的□极值;(2)将函数y=f(x)的□各极值与□端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.函数f(x)在区间(a,b)上的最值在区间(a,b)上函数f(x)的图象是一条连续的曲线时,f(x)在(a,b)内不一定有最值.常见的有以下几种情况:如图,图①中的函数y=f(x)在(a,b)上有最大值而无最小值;图②中的函数y=f(x)在(a,b)上有最小值而无最大值;图③中的函数y=f(x)在(a,b)上既无最大值也无最小值;图④中的函数y=f(x)在(a,b)上既有最大值又有最小值.1.判一判(正确的打“√”,错误的打“×”)(1)函数的最大值一定是函数的极大值.()(2)开区间上的单调连续函数无最值.()(3)函数f(x)在区间[a,b]上的最大值和最小值一定在两个端点处取得.()答案(1)×(2)√(3)×2.做一做(1)设函数f(x)=e2x+3x(x∈R),则f(x)________(填“有”或“无”)最值.(2)已知函数y=x3-x2-x,该函数在区间[0,3]上的最大值是________.(3)已知函数f(x)=-x3+3x2+m(x∈[-2,2]),f(x)的最小值为1,则m=________.1答案(1)无(2)15(3)1探究\s\up7()求已知函数的最值例1已知a是实数,函数f(x)=x2(x-a).(1)若f′(1)=3,求a的值及曲线y=f(x)在点(1,f(1))处的切线方程;(2)求f(x)在区间[0,2]上的最大值.[解](1)f′(x)=3x2-2ax.因为f′(1)=3-2a=3,所以a=0.又当a=0时,f(1)=1,f′(1)=3.所以曲线y=f(x)在点(1,f(1))处的切线方程为3x-y-2=0.(2)令f′(x)=0,解得x1=0,x2=.当≤0,即a≤0时,f(x)在[0,2]上单调递增,从而f(x)max=f(2)=8-4A.当≥2,即a≥3时,f(x)在[0,2]上单调递减,从而f(x)max=f(0)=0.当0<<2,即00,且x变化时,f′(x),f(x)的变化情况如下表:x-1(-1,0)0(0,2)2f′(x)+0-f(x)-7a+bb-16a+b由表可知,当x=0时,f(x)取得极大值,也就是函数在[-1,2]上的最大值,∴f(0)=3,即b=3.又f(-1)=-7a+3,f(2)=-16a+3f(-1),∴f(2)=-16a-29=3,解...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 导数及其应用 1.3 导数在研究函数中的应用 1.3.3 函数的最大(小)值与导数讲义 新人教A版选修2-2-新人教A版高二选修2-2数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部