§1.2.2基本初等函数的导数公式及导数的运算法则教学目标:1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.教学重点:基本初等函数的导数公式、导数的四则运算法则;教学难点:基本初等函数的导数公式和导数的四则运算法则的应用.教学过程设计(一)、情景引入,激发兴趣。【教师提问】:上节课学习了五种常见函数yc、yx、2yx、1yx、yx的导数公式及应用。那么学过的基本初等函数中其他函数的求导公式是什么呢?导数可以进行四则运算吗?(二)、探究新知,揭示概念基本初等函数的导数公式表函数导数yc'0y*()()nyfxxnQ'1nynxsinyx'cosyxcosyx'sinyx()xyfxa'ln(0)xyaaa()xyfxe'xye()logafxx'1()log()(01)lnafxxfxaaxa且()lnfxx'1()fxx1导数的运算法则导数运算法则1.'''()()()()fxgxfxgx2.'''()()()()()()fxgxfxgxfxgx3.'''2()()()()()(()0)()()fxfxgxfxgxgxgxgx(2)推论:''()()cfxcfx(常数与函数的积的导数,等于常数乘函数的导数)(三)、知识应用,深化理解例1.假设某国家在20年期间的年均通货膨胀率为5%,物价p(单位:元)与时间t(单位:年)有如下函数关系0()(15%)tptp,其中0p为0t时的物价.假定某种商品的01p,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?解:根据基本初等函数导数公式表,有'()1.05ln1.05tpt所以'10(10)1.05ln1.050.08p(元/年)因此,在第10个年头,这种商品的价格约为0.08元/年的速度上涨.例2.根据基本初等函数的导数公式和导数运算法则,求函数323yxx的导数.解:'3'3'''2(23)()(2)(3)32yxxxxx,所以,函数323yxx的导数是'232yx。例3日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x时所需费用(单位:元)为5284()(80100)100cxxx求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90%(2)98%解:净化费用的瞬时变化率就是净化费用函数的导数.''''252845284(100)5284(100)()()100(100)xxcxxx20(100)5284(1)(100)xx25284(100)x2(1)因为'25284(90)52.84(10090)c,所以,纯净度为90%时,费用的瞬时变化率是52.84元/吨.(2)因为'25284(98)1321(10090)c,所以,纯净度为98%时,费用的瞬时变化率是1321元/吨.函数()fx在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,''(98)25(90)cc.它表示纯净度为98%左右时净化费用的瞬时变化率,大约是纯净度为90%左右时净化费用的瞬时变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.(四).课堂练习1.课本P18练习2.已知曲线C:y=x3-x+3,求曲线C上横坐标为1的点的切线方程;(y=2x+1)(五)、归纳小结、布置作业教师提出问题:(1)基本初等函数的导数公式表(2)导数的运算法则布置作业:.课本习题1.2A组第4(1)(3)(5),5题;3