3.3导数在研究函数中的应用3.3.1函数的单调性与导数学习目标核心素养1.理解函数的单调性与导数的关系.(重点)2.能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间和其他函数的单调区间.(重点)3.能根据函数的单调性求参数.(难点)1.通过学习函数单调性与导数的关系,培养学生数学抽象与直观想象的素养.2.借助导数求函数的单调性,培养逻辑推理和数学运算的素养.1.函数的单调性与导数的关系(1)在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0常函数(2)在区间(a,b)内函数的单调性与导数有如下关系:函数的单调性导数单调递增f′(x)≥0单调递减f′(x)≤0常函数f′(x)=0思考:在区间(a,b)内,函数f(x)单调递增是f′(x)>0的什么条件?[提示]必要不充分条件.2.函数的变化快慢与导数的关系一般地,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.1.函数y=x3+x的单调递增区间为()A.(0,+∞)B.(-∞,1)C.(1,+∞)D.(-∞,+∞)D[y′=3x2+1>0,故选D.]2.函数f(x)=2x-sinx在(-∞,+∞)上()A.增函数B.减函数C.先增后减D.先减后增A[ f(x)=2x-sinx,∴f′(x)=2-cosx>0,∴f(x)在R上是增函数.]3.若函数f(x)的导数f′(x)=x(x-2),则f(x)在区间________上单调递减.[0,2][ f′(x)=x(x-2),由f′(x)≤0得,0≤x≤2,∴f(x)在[0,2]上单调递减.]导数与函数图象的关系【例1】(1)f′(x)是函数y=f(x)的导函数,若y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()(2)已知函数y=f(x)的图象如图所示,则函数y=f′(x)的图象可能是图中的()(1)D(2)C[(1)由f′(x)>0(f′(x)<0)的分界点判断原函数在此分界点两侧的图象的上升和下降趋势.由已知可得x的取值范围和f′(x)的正、负,f(x)的增减变化情况如下表所示:x(-∞,0)(0,2)(2,+∞)f′(x)+-+f(x)↗↘↗由表可知f(x)在(-∞,0)内递增,在(0,2)内递减,在(2,+∞)内递增,满足条件的只有D,故选D.(2)由函数y=f(x)的图象的增减变化趋势判断函数y=f′(x)的正、负情况如下表:x(-1,b)(b,a)(a,1)f(x)↘↗↘f′(x)-+-由表可知函数y=f′(x)的图象,当x∈(-1,b)时,函数图象在x轴下方;当x∈(b,a)时,函数图象在x轴上方;当x∈(a,1)时,函数图象在x轴下方.故选C.]对于原函数图象,要看其在哪个区间内单调递增,则在此区间内导数值大于零.在哪个区间内单调递减,则在此区间内导数值小于零.根据导数值的正负可判定导函数图象.[跟进训练]1.函数y=f(x)在定义域内可导,其图象如图所示,记y=f(x)的导函数为y=f′(x),则不等式f′(x)<0的解集为__________.(2,3)∪[根据导数和图象单调性的关系知当x(2,3)∈∪时f′(x)<0.]利用导数求函数的单调区间【例2】求下列函数的单调区间:(1)f(x)=3x2-lnx;(2)f(x)=-ax3+x2+1(a≤0).[思路点拨]―→―→―→[解](1)函数的定义域为(0,+∞),f′(x)=6x-=,令f′(x)>0,则>0.又x>0,则6x2-1>0,解得x>.所以函数的单调增区间为.令f′(x)<0,则<0,解得00,则-ax2+2x>0,解得x>0或x<,所以函数的单调增区间为,(0,+∞).令f′(x)<0,则-ax2+2x<0,解得0和f′x<0;4根据3的结果确定函数fx的单调区间.提醒:如果一个函数具有相同单调性的单调区间不止一个,那么这些单调区间不能用“∪”连接,而只能用“逗号”或“和”字隔开.[跟进训练]2.求下列函数的单调区间:(1...