电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 (1.2 指数函数及其性质 第2课时)示范教案 新人教A版必修1VIP免费

高中数学 (1.2 指数函数及其性质 第2课时)示范教案 新人教A版必修1_第1页
1/6
高中数学 (1.2 指数函数及其性质 第2课时)示范教案 新人教A版必修1_第2页
2/6
高中数学 (1.2 指数函数及其性质 第2课时)示范教案 新人教A版必修1_第3页
3/6
第2课时指数函数及其性质(2)导入新课思路1.复习导入:我们前一节课学习了指数函数的概念和性质,下面我们一起回顾一下指数函数的概念、图象和性质.如何利用指数函数的图象和性质来解决一些问题,这就是本堂课要讲的主要内容.教师板书课题.思路2.我们在学习指数函数的性质时,利用了指数函数的图象的特点,并且是用类比和归纳的方法得出,在理论上,我们能否严格的证明特别是指数函数的单调性,以便于我们在解题时应用这些性质,本堂课我们要解决这个问题.教师板书课题:指数函数及其性质(2).应用示例思路1例1已知指数函数f(x)=ax(a>0且a≠1)的图象过点(3,π),求f(0),f(1),f(-3)的值.活动:学生审题,把握题意,教师适时提问,点拨,求值的关键是确定a,一般用待定系数法,构建一个方程来处理,函数图象过已知点,说明点在图象上,意味着已知点的坐标满足曲线的方程,转化为将已知点的坐标代入指数函数f(x)=ax(a>0且a≠1)求a的值,进而求出f(0),f(1),f(-3)的值,请学生上黑板板书,及时评价.解:因为图象过点(3,π),所以f(3)=a3=π,即a=π,f(x)=(π)x.再把0,1,3分别代入,得f(0)=π0=1,f(1)=π1=π,f(-3)=π-1=.点评:根据待定系数的多少来确定构建方程的个数是解题的关键,这是方程思想的运用.例2用函数单调性的定义证明指数函数的单调性.活动:教师点拨提示定义法判断函数单调性的步骤,单调性的定义证明函数的单调性,要按规定的格式书写.证法一:设x1,x2∈R,且x1<x2,则y2-y1=ax2-ax1=ax1(ax2-x1-1).因为a>1,x2-x1>0,所以ax2-x1>1,即ax2-x1-1>0.又因为ax1>0,所以y2-y1>0,即y11,y10且y≠1}.(2)由5x-1≥0得x≥,所以所求函数定义域为{x|x≥}.由≥0得y≥1,所以函数值域为{y|y≥1}.(3)所求函数定义域为R,由2x>0可得2x+1>1.所以函数值域为{y|y>1}.(4)由已知得:函数的定义域是R,且(2x+1)y=2x-2,即(y-1)2x=-y-2.因为y≠1,所以2x=.又x∈R,所以2x>0,>0.解之,得-20,所以值域为(0,1)∪(1,+∞).例2(1)求函数y=()的单调区间,并证明.(2)设a是实数,f(x)=a(x∈R),试证明对于任意a,f(x)为增函数.活动:(1)这个函数的单调区间由两个函数决定,指数函数y=()x与y=x2-2x的复合函数,(2)函数单调性的定义证明函数的单调性,要按规定的格式书写.解法一:设x10.当x1...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 (1.2 指数函数及其性质 第2课时)示范教案 新人教A版必修1

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部