电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第1章 常用逻辑用语 1.4 全称量词与存在量词(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案VIP免费

高中数学 第1章 常用逻辑用语 1.4 全称量词与存在量词(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案_第1页
1/7
高中数学 第1章 常用逻辑用语 1.4 全称量词与存在量词(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案_第2页
2/7
高中数学 第1章 常用逻辑用语 1.4 全称量词与存在量词(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案_第3页
3/7
1.4全称量词与存在量词学习目标核心素养1.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义以及全称命题和特称命题的意义.2.掌握全称命题与特称命题真假性的判定.(重点、难点)3.能正确地对含有一个量词的命题进行否定.(重点、易混点)1.通过学习全称命题及特称命题的概念,培养数学抽象素养.2.借助含有一个量词的命题的否定,提升逻辑推理素养.1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题叫做全称命题,通常将含有变量x的语句用p(x),q(x),r(x),…表示,变量x的取值范围用M表示,那么全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x).2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题,特称命题“存在M中的元素x0,使p(x0)成立”,可用符号简记为“∃x0∈M,p(x0)”.思考:(1)“一元二次方程ax2+2x+1=0有实数解”是特称命题还是全称命题?请改写成相应命题的形式.(2)“不等式(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立”是特称命题还是全称命题?请改写成相应命题的形式.[提示](1)是特称命题,可改写为“存在x0∈R,使ax+2x0+1=0”(2)是全称命题,可改写成:“∀x∈R,(m+1)x2-(m-1)x+3(m-1)<0”.3.含有一个量词的命题的否定一般地,对于含有一个量词的命题的否定,有下面的结论:全称命题p:∀x∈M,p(x),它的否定¬p:∃x0∈M,¬p(x0);特称命题p:∃x0∈M,p(x0),它的否定¬p:∀x∈M,¬p(x).全称命题的否定是特称命题,特称命题的否定是全称命题.1.命题p:“存在实数m,使方程x2+mx+1=0有实数根”,则“p”形式的命题是()A.存在实数m,使方程x2+mx+1=0无实根B.不存在实数m,使方程x2+mx+1=0无实根C.对任意的实数m,方程x2+mx+1=0无实根D.至多有一个实数m,使方程x2+mx+1=0有实根[答案]C2.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3B.∃x0∈Z,5x0+1=0C.∀x∈R,x2-1=0D.∀x∈R,x2+x+2>0D[当x∈R时,x2+x+2=+>0,故选D.]3.(1)命题“有些长方形是正方形”中含有的量词是________,该量词是________量词(填“全称”或“存在”),该命题是________命题(填“全称”或“特称”).(2)命题“负数没有对数”中省略的量词是________,这是一个________命题(填“全称”或“特称”).[答案](1)有些存在特称(2)一切(所有的等)全称全称(特称)命题的概念及真假判断【例1】指出下列命题是全称命题还是特称命题,并判断它们的真假.(1)∀x∈N,2x+1是奇数;(2)存在一个x0∈R,使=0;(3)能被5整除的整数末位数是0;(4)有一个角α,使sinα>1.[解](1)是全称命题.因为∀x∈N,2x+1都是奇数,所以该命题是真命题.(2)是特称命题.因为不存在x0∈R,使=0成立,所以该命题是假命题.(3)是全称命题.因为25能被5整除,但末位数不是0,因此该命题是假命题.(4)是特称命题.因为∀α∈R,sinα∈[-1,1],所以该命题是假命题.1.判断命题是全称命题还是特称命题的方法(1)分析命题中是否含有量词;(2)分析量词是全称量词还是存在量词;(3)若命题中不含量词,要根据命题的意义去判断.2.全称命题与特称命题真假的判断方法(1)要判定全称命题“∀x∈M,p(x)”是真命题,需要对集合M中每个元素x,证明p(x)都成立;如果在集合M中找到一个元素x0,使得p(x0)不成立,那么这个全称命题就是假命题.(2)要判定特称命题“∃x0∈M,p(x0)”是真命题,只需在集合M中找到一个元素x0,使p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么这个特称命题就是假命题.[跟进训练]1.以下四个命题既是特称命题又是真命题的是()A.锐角三角形的内角是锐角或钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使>2B[A中锐角三角形的内角是锐角或钝角是全称命题;B中x=0时,x2=0,所以B既是特称命题又是真命题;C中因为+(-)=0,所以C是假命题;D中对于任一个负数x,都有<0,所以D是假命题...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第1章 常用逻辑用语 1.4 全称量词与存在量词(教师用书)教案 新人教A版选修1-1-新人教A版高二选修1-1数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部