北师大版『高中数学·必修1』教案安徽省界首一中心力QQ:1217028991.1-2集合的概念及其表示(二)教学目标:掌握表示集合方法;了解空集的概念及其特殊性,渗透抽象、概括思想。教学重点:集合的表示方法教学难点:正确表示一些简单集合课型:新课教学手段:讲授教学过程:一、创设情境复习提问:集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示(板书课题)我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合二、新课讲解1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“maths中的字母”构成的集合,写成{m,a,t,h,s}由“book中的字母”构成的集合,写成{b,o,k}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。比如:与不同,∈(3)集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。例1(P4)2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。格式:{x∈A|P(x)}含义:在集合A中满足条件P(x)的x的集合。例:不等式的解集可以表示为:或第1页(共3页)北师大版『高中数学·必修1』教案安徽省界首一中心力QQ:121702899“中国的直辖市”构成的集合,写成{为中国的直辖市};“maths中的字母”构成的集合,写成{为maths中的字母};“平面直角坐标系中第二象限的点”{(x,y)|x<0且y>0}“方程x2+5x-6=0的实数解”{x∈R|x2+5x-6=0}={-6,1}注:(1)在不致混淆的情况下,可以省去竖线及左边部分。如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}例2(P5)3、图示法:文氏图(Venn图):用一条封闭的曲线的内部来表示一个集合的方法。边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.数轴法:{x∈R|3