第九节直线与圆锥曲线【考纲下载】1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即消去y,得ax2+bx+c=0.(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=·=·|y1-y2|=·.直线与圆锥曲线只有一个公共点时,是否是直线与圆锥曲线相切?提示:直线与圆锥曲线只有一个公共点时,未必一定相切,还有其他情况,如抛物线与平行或重合于其对称轴的直线,双曲线与平行于其渐近线的直线,它们都只有一个公共点,但不是相切,而是相交.1.已知直线x-y-1=0与抛物线y=ax2相切,则a等于()A.B.C.D.4解析:选C由消去y得ax2-x+1=0,所以解得a=.2.直线y=x+3与双曲线-=1的交点个数是()A.1B.2C.1或2D.0解析:选A因为直线y=x+3与双曲线的渐近线y=x平行,所以它与双曲线只有1个交点.3.设抛物线x2=4y的焦点为F,经过点P(1,5)的直线l与抛物线相交于A,B两点,且点P恰为线段AB的中点,则|AF|+|BF|=________.解析:A(x1,y1),B(x2,y2),则y1+y2=10,由抛物线定义得|AF|+|BF|=y1+y2+p=10+2=12.答案:124.直线y=kx+1与椭圆+=1恒有公共点,则m的取值范围是________.解析:直线y=kx+1过定点(0,1),由题意,点(0,1)在椭圆内或椭圆上.则m≥1,且m≠5.答案:m≥1且m≠55.过椭圆+=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O为坐标原点,则△OAB的面积为________.解析:由c==1,知椭圆右焦点为(1,0),则直线方程为y=2(x-1),联立方程得解得x1=0,x2=,设A(x1,y1),B(x2,y2),则y1=-2,y2=.∴S△=×1×|y1-y2|=×1×=.答案:考点一圆锥曲线中的最值(或取值范围)问题[例1](·新课标全国卷Ⅱ)平面直角坐标系xOy中,过椭圆M:+=1(a>b>0)右焦点的直线x+y-=0交M于A,B两点,P为AB的中点,且OP的斜率为.(1)求M的方程;(2)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.[自主解答](1)设A(x1,y1),B(x2,y2),P(x0,y0),则+=1,+=1,=-1,由此可得=-=1.因为x1+x2=2x0,y1+y2=2y0,=,所以a2=2b2.又由题意知,M的右焦点为(,0),故a2-b2=3.因此a2=6,b2=3.所以M的方程为+=1.(2)由解得或因此|AB|=.由题意可设直线CD的方程为y=x+n,设C(x3,y3),D(x4,y4).由得3x2+4nx+2n2-6=0.于是x3,4=.因为直线CD的斜率为1,所以|CD|=|x4-x3|=.由已知,四边形ACBD的面积S=|CD|·|AB|=.当n=0时,S取得最大值,最大值为.所以四边形ACBD面积的最大值为.【互动探究】若本例的条件不变,则四边形ACBD的面积有最小值吗?若有,求出其值;若没有,说明理由.解:由(2)可知3x2+4nx+2n2-6=0,又 y=x+n与椭圆+=1相交,∴Δ=(4n)2-4×3(2n2-6)=8(9-n2)>0,即-3