电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专版)高考数学一轮复习 第八章 第四节 直线、平面垂直的判定及其性质教案 文(含解析)苏教版-苏教版高三全册数学教案VIP免费

(江苏专版)高考数学一轮复习 第八章 第四节 直线、平面垂直的判定及其性质教案 文(含解析)苏教版-苏教版高三全册数学教案_第1页
1/16
(江苏专版)高考数学一轮复习 第八章 第四节 直线、平面垂直的判定及其性质教案 文(含解析)苏教版-苏教版高三全册数学教案_第2页
2/16
(江苏专版)高考数学一轮复习 第八章 第四节 直线、平面垂直的判定及其性质教案 文(含解析)苏教版-苏教版高三全册数学教案_第3页
3/16
第四节直线、平面垂直的判定及其性质1.直线与平面垂直(1)直线和平面垂直的定义:直线l与平面α内的任意一条直线都垂直,就说直线l与平面α互相垂直.(2)直线与平面垂直的判定定理及性质定理:文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面⇒l⊥α性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⇒a∥b2.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⇒α⊥β性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面⇒l⊥α[小题体验]1.已知平面α⊥平面β,直线l⊥平面β,则直线l与平面α的位置关系为________.答案:平行或直线l在平面α内2.PD垂直于正方形ABCD所在的平面,连接PB,PC,PA,AC,BD,则一定互相垂直的平面有________对.解析:由于PD⊥平面ABCD,故平面PAD⊥平面ABCD,平面PDB⊥平面ABCD,平面PDC⊥平面ABCD,平面PDA⊥平面PDC,平面PAC⊥平面PDB,平面PAB⊥平面PAD,平面PBC⊥平面PDC,共7对.答案:71.证明线面垂直时,易忽视面内两条线为相交线这一条件.2.面面垂直的判定定理中,直线在面内且垂直于另一平面易忽视.3.面面垂直的性质定理在使用时易忘面内一线垂直于交线而盲目套用造成失误.1[小题纠偏]1.“直线a与平面M内的无数条直线都垂直”是“直线a与平面M垂直”的________条件(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).解析:根据直线与平面垂直的定义知“直线a与平面M的无数条直线都垂直”不能推出“直线a与平面M垂直”,反之可以,所以是必要不充分条件.答案:必要不充分2.(2018·南京三模)已知α,β是两个不同的平面,l,m是两条不同的直线,l⊥α,m⊂β.给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③m∥α⇒l⊥β;④l⊥β⇒m∥α.其中正确的命题是________(填写所有正确命题的序号).解析:①由l⊥α,α∥β,得l⊥β,又因为m⊂β,所以l⊥m,故①正确;②由l⊥α,α⊥β,得l∥β或l⊂β,又因为m⊂β,所以l与m或异面或平行或相交,故②不正确;③由l⊥α,m∥α,得l⊥m.因为l只垂直于β内的一条直线m,所以不能确定l是否垂直于β,故③不正确;④由l⊥α,l⊥β,得α∥β.因为m⊂β,所以m∥α,故④正确.答案:①④考点一直线与平面垂直的判定与性质[锁定考向]直线与平面垂直的判定与性质是每年高考的必考内容,题型多为解答题.常见的命题角度有:(1)证明直线与平面垂直;(2)利用线面垂直的性质证明线线平行.[题点全练]角度一:证明直线与平面垂直1.如图所示,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(1)CD⊥AE;(2)PD⊥平面ABE.证明:(1)在四棱锥PABCD中, PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD. AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA. E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.2而PD⊂平面PCD,∴AE⊥PD. PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥AB.又 AB⊥AD,且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又 AB∩AE=A,∴PD⊥平面ABE.角度二:利用线面垂直的性质证明线线平行2.如图,在正方体ABCDA1B1C1D1中,EF与异面直线AC,A1D都垂直相交.求证:(1)EF⊥平面AB1C;(2)EF∥BD1.证明:(1)在正方体ABCDA1B1C1D1中,A1B1∥AB∥CD,且A1B1=AB=CD,所以四边形A1B1CD是平行四边形,所以A1D∥B1C.因为EF⊥A1D,所以EF⊥B1C.又因为EF⊥AC,AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以EF⊥平面AB1C.(2)连结BD,则BD⊥AC.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.因为DD1∩BD=D,DD1⊂平面BDD1B1,BD⊂平面BDD1B1,所以AC⊥平面BDD1B1.又BD1⊂平面BDD1B1,所以AC⊥BD1.同理可证BD1⊥B1C.又AC∩B1C=C,AC⊂平面AB1C,B1C⊂平面AB1C,所以BD1⊥平面AB1C.又EF⊥平面AB1C,所以EF∥BD1.[通法在握]判定直线和平面垂直的4种...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专版)高考数学一轮复习 第八章 第四节 直线、平面垂直的判定及其性质教案 文(含解析)苏教版-苏教版高三全册数学教案

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部