§5.3平面向量的数量积考情考向分析主要考查利用数量积的定义解决数量积的运算、求模与夹角等问题,考查利用数量积的坐标表示求两个向量的夹角、模以及判断两个平面向量的平行与垂直关系.一般以填空题的形式考查,偶尔会在解答题中出现,属于中档题.1.向量的夹角已知两个非零向量a和b,作OA=a,OB=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是[0,π].2.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量|a||b|·cosθ叫做a与b的数量积(或内积),记作a·b投影|a|cosθ叫做向量a在b方向上的投影,|b|cosθ叫做向量b在a方向上的投影几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积拓展:向量数量积不满足:①消去律,即a·b=a·c⇏b=c;②结合律,即(a·b)·c⇏a·(b·c).3.向量数量积的运算律(1)a·b=b·a.(2)(λa)·b=λ(a·b)=a·(λb)=λa·b.(3)(a+b)·c=a·c+b·c.4.平面向量数量积的有关结论已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.结论几何表示坐标表示模|a|=|a|=夹角cosθ=cosθ=a⊥b的充要条件a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤概念方法微思考1.a在b方向上的投影与b在a方向上的投影相同吗?提示不相同.因为a在b方向上的投影为|a|cosθ,而b在a方向上的投影为|b|cosθ,其中θ为a与b的夹角.2.两个向量的数量积大于0,则夹角一定为锐角吗?提示不一定.当夹角为0°时,数量积也大于0.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量.(√)(2)由a·b=0可得a=0或b=0.(×)(3)(a·b)c=a(b·c).(×)(4)两个向量的夹角的范围是.(×)(5)若a·b>0,则a和b的夹角为锐角;若a·b<0,则a和b的夹角为钝角.(×)题组二教材改编2.[P90T18]已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=________.答案12解析 2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k)=0,∴10+2-k=0,解得k=12.3.[P89T8]已知两个单位向量e1,e2的夹角为.若向量b1=e1-2e2,b2=3e1+4e2,则b1·b2=________.答案-6解析b1=e1-2e2,b2=3e1+4e2,则b1·b2=(e1-2e2)·(3e1+4e2)=3e-2e1·e2-8e.因为e1,e2为单位向量,〈e1,e2〉=,所以b1·b2=3-2×-8=3-1-8=-6.题组三易错自纠4.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=________.答案2解析方法一|a+2b|=====2.方法二(数形结合法)由|a|=|2b|=2知,以a与2b为邻边可作出边长为2的菱形OACB,如图,则|a+2b|=|OC|.又∠AOB=60°,所以|a+2b|=2.5.已知|a|=3,|b|=2,若a·b=-3,则a与b的夹角的大小为________.答案解析设a与b的夹角为θ,则cosθ===-.又0≤θ≤π,所以θ=.6.已知△ABC的三边长均为1,且AB=c,BC=a,CA=b,则a·b+b·c+a·c=________.答案-解析 〈a,b〉=〈b,c〉=〈a,c〉=120°,|a|=|b|=|c|=1,∴a·b=b·c=a·c=1×1×cos120°=-,∴a·b+b·c+a·c=-.题型一平面向量数量积的基本运算1.(2018·全国Ⅱ改编)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=________.答案3解析a·(2a-b)=2a2-a·b=2|a|2-a·b. |a|=1,a·b=-1,∴原式=2×12+1=3.2.(2018·苏北四市调研)已知平面向量a与b的夹角等于,若|a|=2,|b|=3,则|2a-3b|=________.答案解析由题意可得a·b=|a|·|b|cos=3,所以|2a-3b|====.3.(2018·江苏)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若AB·CD=0,则点A的横坐标为________.答案3解析设A(a,2a),则a>0.又B(5,0),故以AB为直径的圆的方程为(x-5)(x-a)+y(y-2a)=0.由题意知C.由解得或∴D(1,2).又AB·CD=0,AB=(5-a,-2a),CD=,∴(5-a,-2a)·=a2-5a-=0,解得a=3或a=-1.又a>0,∴a=3.4.(2018·江苏淮安清江中学调研)如图,在△ABC中,∠BAC=120°,AB=AC=2,D为BC边...