电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

1094 11.1 随机事件的概率VIP免费

1094 11.1  随机事件的概率_第1页
1094 11.1  随机事件的概率_第2页
1094 11.1  随机事件的概率_第3页
沛县中学高三一轮数学教案第十一章概率●网络体系总览●高考大纲随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生k次的概率.11.1随机事件的概率一、知识梳理1.随机事件:在一定条件下可能发生也可能不发生的事件.2.必然事件:在一定条件下必然要发生的事件.3.不可能事件:在一定条件下不可能发生的事件.4.事件A的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A).由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0.5.等可能性事件的概率:一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是.如果某个事件A包含的结果有m个,那么事件A的概率P(A)=.6.使用公式P(A)=计算时,确定m、n的数值是关键所在,其计算方法灵活多变,没有固定的模式,可充分利用排列组合知识中的分类计数原理和分步计数原理,必须做到不重复不遗漏.二、考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.246沛县中学高三一轮数学教案(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.三、基础训练1.(2004年全国Ⅰ,文11)从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是CA.B.C.D.2.(2004年重庆,理11)某校高三年级举行的一次演讲比赛共有10位同学参加,其中一班有3位,二班有2位,其他班有5位.若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为BA.B.C.D.3.(2004年江苏,9)将一颗质地均匀的骰子(它是一种各面上分别标有点数1、2、3、4、5、6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是DA.B.C.D.4.一盒中装有20个大小相同的弹子球,其中红球10个,白球6个,黄球4个,一小孩随手拿出4个,求至少有3个红球的概率为__.5.在两个袋中各装有分别写着0,1,2,3,4,5的6张卡片.今从每个袋中任取一张卡片,则取出的两张卡片上数字之和恰为7的概率为_______.6.(江西卷)将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为(A)A.B.C.D.7.(辽宁卷)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为(D)A.B.C.D.四、例题分析【例1】用数字1,2,3,4,5组成五位数,求其中恰有4个相同数字的概率.P==.【例2】从男女生共36人的班中,选出2名代表,每人当选的机会均等.如果选得同性代表的概率是,求该班中男女生相差几名?男女生相差6人.【例3】把4个不同的球任意投入4个不同的盒子内(每盒装球数不限),计算:(1)无空盒的概率;247沛县中学高三一轮数学教案(2)恰有一个空盒的概率.无空盒的概率是;恰有一个空盒的概率是.深化拓展把n+1个不同的球投入n个不同的盒子(n∈N*).求:(1)无空盒的概率;(2)恰有一空盒的概率.【例4】某人有5把钥匙,一把是房门钥匙,但忘记了开房门的是哪一把.于是,他逐把不重复地试开,问:(1)恰好第三次打开房门锁的概率是多少?(2)三次内打开的概率是多少?(3)如果5把内有2把房门钥匙,那么三次内打开的概率是多少?(1)P(A)==.(2)P(A)==.(3)P(A)==.拓展题例【例1】某油漆公司发出10桶油漆,其中白漆5桶,黑漆3桶,红漆2桶.在搬运中所有标签脱落,交货人随意将这些标签重新贴上,问一个定货3桶白漆、2桶黑漆和1桶红漆的顾客,按所定的颜色如数得到定货的概...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部