第四章图形的初步认识4.1生活中的立体图形教学目的:1、通过学习能认识常见的图形,并能对常见的图形进行分类、分辨;2、能够对实际中的物体进行抽象化为图形;3、能了解多面体中的欧拉公式。教学分析:重点:基本图形的认识与分辨;难点:欧拉公式的应用与认识。教具准备:每个小组准备相关的立体图形及实际生活物品。教学设想:强调几何学与实际生活的理论联系实际。教学过程:一、知识导向:本节从学生的生活周围入手,通过观察认识到生活以生活的周围存在着规则的和不规则的物体,规则物体是我们进一步学习和研究的对象。对于教材中出现的一些概念,如圆柱、棱柱等,都不是定义,仅是描述性的说法。教学中不要求学生掌握严格的概念,只要求能通过具体图形进行识别或判断。在教学中注意引导学生观察、体验数学概念的抽象和形成的过程。二、新课拆析:1、知识基础:我们都知道,我们的生活空间是一个三维的世界,我们生活中的生活中的物体都是立体的物体,而这些物体中有一部分是较有规则的,如:生活物体苹果、球天坛顶端塔顶粉笔盒笔筒类似图形球体圆锥棱锥棱柱圆柱2、知识形成:图1图2图3图4图5在上面的图形中:(1)图1所表示的立体图形是柱体(圆柱体);(2)图2所表示的立体图形是柱体(棱柱体);(3)图3所表示的立体图形是锥体(圆锥体);(4)图4所表示的立体图形是球体;(5)图5所表示的立体图形是锥体(棱锥体);另外,棱柱有三棱柱、四棱柱、五棱柱、六棱柱……等;棱锥有三棱锥、四棱锥、五棱锥、六棱锥……等;如:1三棱柱四棱柱五棱柱六棱柱三棱锥四棱锥五棱锥六棱锥3、知识拓展:从下面的多个多面体:正四面体正方体正八面体……经过我们数图中每一个多面体所具有的顶点数(V)、棱数(E)、和面数(F):多面体顶点数(V)面数(F)棱数(E)V+F-E正四面体4462正方体正八面体正十二面体正二十面体……从上面的结果,伟大的数学家欧拉证明了:概括:欧拉公式顶点数+面数-棱数=2三、巩固训练:P122exc1、2、3四、知识小结:本节课主要学习了实际物体与图形间的关系,知道了棱柱、棱锥、圆柱、圆锥的分类及分辨。五、课外作业:P123exc1、2、3六、每日预题:1、各小组准备好各种规则的图形;2、一个物体是否从各个方向看都是一样的?七、教学反馈:4.2画立体图形由立体图形到视图2教学目的:1、通过学习使学生能知道物体是有多个方面,从不同方面来观察物体是不一样的;2、能画出简单立体图形的三视图。教学分析:重点:如何确定物体的三视图;难点:转化思想的培养。教具准备:各小组与老师都准备一些简单的立体图形。教学设想:以学生的独立思考,老师的启发为主。教学过程:一、知识导向:视图法是画立体图形的一种方法,在生产实际中经常用到,因为学生的空间思维还处于形成阶段,所以对本部分的要求不能过高,仅要求学生认识到视图法是一种在生产实际中常用的方法,能描述简单立体图形的视图,如球、圆柱、圆锥棱柱、棱锥及立方体的简单组合等,棱柱仅限于直棱柱,棱锥限于正棱锥,能画出草图,仅要求学生能识别所见到的视图形状与类别。二、新课拆析:1、知识形成:在平面上画空间的物体不是一件简单的事,因为必须把它画得从各个方面看都很清楚。为了解决这个问题,创造了三视图法。概括:(1)三视图指的是从正面、上面和侧面(左面或右面)三个不同的方向看一个物体;(2)根据上面的过程,然后描绘三张所看到的图,即视图。如:从正面看:从正面看到的图形,称为正视图;从左面看:3从侧面看到的图形,称为侧视图,依观看方向不同,有左视图、右视图;从上面看:从上面看到的图形,称为俯视图。2、例解讲解:例:1、画出如图所示的正方体和圆柱的三视图。2、画出如图所示的四棱锥的三视图。三、巩固训练:P123exc1、2四、知识小结:本节课学习了常见立体图形的三视图,在画三视图的过程中,我们要掌握我们所选择看图形的角度。五、课外作业:P129exc1、2、3六、每日预题:1、如何把三视图转化为立体图形?2、一个三视图是不是只能转化成一个立体图形?七、教学反馈:4.2画立体图形由视图到立体图形教学目的:1、通过学习使学生继续感受数学的转...