碰撞与动量守恒学案能力素质【例1】质量M=50kg的空箱子,放在光滑的水平面上,箱中有一质量m=30kg的铁块,如图56-1所示.铁块的左侧面与箱子内壁的左侧面相距S=1m,铁块一旦碰到箱壁后不再分开,箱底与铁块间摩擦可忽略不计,现用向右的恒力F=10N作用于箱子,经过时间t=2s后撤去.求(1)箱的左壁与铁块碰撞前铁块和箱的速度;(2)箱的左壁与铁块碰撞后箱子的速度.解析:(1)在F作用的2s内,设箱没有碰到铁块,则对于箱子2s末的速度==,发生的位移=·=<假设成v0.4m/sst0.4m1mMM2FtM12立,所以碰前箱的速度为0.4m/s,水平向右,铁块的速度为零.(2)箱子与铁块碰撞时,外力F已撤去,对箱子与铁块这一系统碰撞过程中总动量守恒MvM=(M+m)v',所以碰后的共同速度为v′=MvMmM=,方向向右.0.25m/s点拨:要善于分析不同的物理过程和应用相应物理规律,对整个运动过程,我们就箱子和铁块这一系统用动量定理有:Ft=(M+m)v',这一关系不论在何时撤去F,最终的共同速度都由此关系求出【例2】质量为m,半径为R的小球,放在质量为M,半径为2R的圆柱形桶内,桶静止在光滑的水平面上,当小球从图56-2所示的位置无初速地运动到最低点时,圆筒移动的距离是,求圆筒的质量与小R3球的质量之比.点拨:在球和圆筒相互作用的过程中,系统在水平方向的动量始终不变(在竖直方向的动量先增大后减少),所以可以用水平方向的位移来表示水平方向的动量守恒.点击思维【例3】从地面以速率v1竖直向上抛出一小球,小球落地时的速率为v2,若小球在运动过程中所受的空气阻力大小与其速率成正比,试求小球在空中的运动时间.解析:小球在上升阶段和下落阶段发生的位移大小相等,方向相反.位移在速度图象上是图线与时间轴所围的“面积”,冲量在力随时间变化的图象(F~t图象)上是图线与时间轴所围的“面积”,由题意空气阻力与速率成正比,可得到小球在上升阶段和下落阶段空气阻力的冲量大小相等,方向相反,即在小球的整个运动过程中,空气阻力对小球的总冲量为零.用心爱心专心对小球在整个过程中,由动量定理得:mgtmvm(v)t21·=--,所以运动的总时间=.vvg12点拨在各知识点间进行分析,类比是高考对考生能力的要求,高考考纲明文规定“能运用几何图形,函数图象进行表达、分析”.【例4】总质量为M的列车以不变的牵引力匀速行驶,列车所受的阻力与其重量成正比,在行驶途中忽然质量为m的最后一节车厢脱钩.司机发现事故关闭油门时已过时间T,求列车与车厢停止运动的时间差.点拨车厢未脱钩时,列车匀速运动,所以牵引力F=kMg,车厢脱钩后,对脱钩的车厢和前面部分的列车分别应用动量定理.本题也可以这样来考虑,若车厢一脱钩司机就关闭油门,则列车与脱钩的车厢同时停止运动,现由于过了时间T才关闭油门,所以存在时间差ΔT,按冲量作用与动量变化的关系应有,牵引力在时间T内的冲量等于前面部分的列车比脱钩的车厢多运动时间ΔT内阻力的冲量.即kMgT=k(M-m)gΔT.学科渗透【例5】一个宇航员,连同装备的总质量为100kg,在空间跟飞船相距45m处相对飞船处于静止状态,他带有一个装有0.5kg氧气的贮气筒,贮气筒上有一个可以以50m/s的速度喷出氧气的喷嘴,宇航员必须向着跟返回飞船方向相反的方向释放氧气,才能回到飞船上去,同时又必须保留一部分氧气供他在返回飞船的途中呼吸,已知宇航员呼吸的耗氧率为2.5×10-4kg/s试问:(1)如果他在准备返回的瞬时,释放0.15kg的氧气,他是否能安全地返回到飞船?(2)宇航员安全地返回飞船的最长和最短时间分别是多少?解析:宇航员使用氧气喷嘴喷出一部分氧气后,根据动量守恒定律,可以求出他返回的速度,从而求出返回的时间和返回途中呼吸所消耗的氧气.(1)令M=100kg,m0=0.5kg,Δm=0.15kg,氧气的释放速度为u,宇航员的返回速度为v由动量守恒定律得0=(M-Δm)v-Δm(u-v)vu500.075(m/s)=Δ=×=mM015100.宇航员返回飞船所需时间===t600(s)sv450075.宇航员返回途中所耗氧气m'=kt=2.5×10-4×600=0.15(kg)氧气筒喷射后剩余氧气m″=m0-m=0.5-0.15=0.35(kg)>m',所以宇航员能安全返回飞船.(2)设释放氧气Δm未知,途中所需...