电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

江苏省常州市西夏墅中学高中数学 等比数列的前n项和(第2课时)教案 新人教版必修5VIP免费

江苏省常州市西夏墅中学高中数学 等比数列的前n项和(第2课时)教案 新人教版必修5_第1页
1/6
江苏省常州市西夏墅中学高中数学 等比数列的前n项和(第2课时)教案 新人教版必修5_第2页
2/6
江苏省常州市西夏墅中学高中数学 等比数列的前n项和(第2课时)教案 新人教版必修5_第3页
3/6
江苏省常州市西夏墅中学高中数学等比数列的前n项和(第2课时)教案新人教版必修5教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题;(2)能力目标:提高学生的建模意识,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想;(3)情感目标:培养学生将数学学习放眼生活,用生活眼光看数学的思维品质;教学重点:(1)等比数列的前n项和公式;(2)等比数列的前n项和公式的应用;教学难点:等比数列的前n项和公式的推导;教学方法:问题探索法及启发式讲授法教具:多媒体教学过程:一、复习提问回顾等比数列定义,通项公式。(1)等比数列定义:(,(2)等比数列通项公式:(3)等差数列前n项和公式的推导方法:倒序相加法。二、问题引入:阅读:“国王的赏赐”。问题:如何计算引出课题:等比数列的前n项和。三、问题探讨:回顾:等差数列的前n项和公式的推导方法。倒序相加法。等差数列它的前n项和是根据等差数列的定义(1)(2)(1)+(2)得:探究:等比数列的前n项和公式是否能用倒序相加法推导?学生讨论分析,得出等比数列的前n项和公式不能用倒序相加法推导。回顾:等差数列前n项和公式的推导方法本质。构造相同项,化繁为简。探究:等比数列前n项和公式是否能用这种思想推导?根据等比数列的定义:变形:具体:……学生分组讨论推导等比数列的前n项和公式,学生不难发现:由于等比数列中的每一项乘以公比都等于其后一项。所以将这一特点应用在前n项和上。由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。(1)(2)由此构造相同项。数学具有和谐美,错位相减,从而化繁为简。当q=1时,当时,学生经过讨论还发现了其他的推导方法,让学生课后整合自己的思路,将各自的推导过程展示在班级学习园地,同学们共享探究。由等比数列的通项公式推出求和公式的第二种形式:当时,四.知识整合:2.公式特征:⑴等比数列求和时,应考虑与两种情况。⑵当时,等比数列前n项和公式有两种形式,分别都涉及四个量,四个量中“知三求一”。⑶等比数列通项公式结合前n项和公式涉及五个量,,五个量中“知三求二”(方程思想)。3.等比数列前n项和公式推导方法:错位相减法。五、例题精讲:例1.在等比数列{an}中(1)已知a1=-4,q=1/2,求S10;(2)已知a1=1,ak=243,q=3,求Sk.例2.在等比数列{an}中,S3=7/2,S6=63/2,求an.巩固练习:⑴已知等比数列中,,,求。⑵已知等比数列中,,,,求n,。六、课堂小结:1、等比数列的前n项和公式:当q=1时,当时,2、等比数列的前n项和推导方法:错位相减法。3、数学思想:类比,分类讨论,方程的数学思想。七、课后作业:基础题:课本P61习题2.5A组1,2提高题:求和(探究与发现:查阅网络,思考等比数列前n项和公式还有无其它推导方法?八、板书设计:2.5.1等比数列的前n项和公式:例1例2特征变式练习:巩固练习:

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

江苏省常州市西夏墅中学高中数学 等比数列的前n项和(第2课时)教案 新人教版必修5

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部