4.1.2圆的标准一般方程一、教学目标1、目标:(1)在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心、半径.掌握方程x2+y2+Dx+Ey+F=0表示圆的条件,通过对方程x2+y2+Dx+Ey+F=0表示圆的条件的探究,培养学生探索发现及分析、解决问题的能力.(2)能通过配方等手段,把圆的一般方程化为圆的标准方程.能用待定系数法和轨迹法求圆的方程.2、解析:圆的标准方程的优点在于明确直观地指出圆心坐标和半径的长.我们知道,圆心确定圆的位置,半径确定圆的大小,它有利于研究圆的有关性质和作图.而由圆的一般方程可以很容易判别一般的二元二次方程中,哪些是圆的方程,哪些不是圆的方程,它们各有自己的优点,在教学过程中,应当使学生熟练地掌握圆的标准方程与圆的一般方程的互化,尤其是由圆的一般方程通过配方化为圆的标准方程,从而求出圆心坐标和半径.要画出圆,就必须要将曲线方程通过配方化为圆的标准方程,然后才能画出曲线的形状.这充分说明了学生熟练地掌握这两种方程互化的重要性和必要性.二、预习导引1,圆的一般方程的定义当D2+E2-4F>0.时,二元二次方程称为圆的一般方程,此时圆心坐标,半径。三,问题引领、探究新知问题1:前一章我们研究直线方程用的什么顺序和方法?问题2:这里我们研究圆的方程是否也能类比研究直线方程的顺序和方法呢?问题3:给出式子x2+y2+Dx+Ey+F=0,请你利用配方法化成不含x和y的一次项的式子.问题4:把式子(x-a)2+(y-b)2=r2与x2+y2+Dx+Ey+F=0配方后的式子比较,得出x2+y2+Dx+Ey+F=0表示圆的条件.问题5:对圆的标准方程与圆的一般方程作一比较,看各自有什么特点?师生活动:学生思考,回答。教师总结后得出讨论结果:1、以前学习过直线,我们首先学习了直线方程的点斜式、斜截式、两点式、截距式,最后学习一般式.大家知道,我们认识一般的东西,总是从特殊入手.如探求直线方程的一般形式就是通过把特殊的公式(点斜式、两点式、…)展开整理而得到的.2、我们想求圆的一般方程,可仿照直线方程试一试!我们已经学习了圆的标准方程,把标准形式展开,整理得到,也是从特殊到一般.3、把式子x2+y2+Dx+Ey+F=0配方得(x+)2+(y+)2=.4、(x-a)2+(y-b)2=r2中,r>0时表示圆,r=0时表示点(a,b),r<0时不表示任何图形.1因此式子(x+)2+(y+)2=.(ⅰ)当D2+E2-4F>0时,表示以(-,-)为圆心,为半径的圆;(ⅱ)当D2+E2-4F=0时,方程只有实数解x=-,y=-,即只表示一个点(-,-);(ⅲ)当D2+E2-4F<0时,方程没有实数解,因而它不表示任何图形.综上所述,方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,由此得到圆的方程都能写成x2+y2+Dx+Ey+F=0的形式,但方程x2+y2+Dx+Ey+F=0表示的曲线不一定是圆,只有当D2+E2-4F>0时,它表示的曲线才是圆.因此x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F>0.我们把形如x2+y2+Dx+Ey+F=0表示圆的方程称为圆的一般方程.5、圆的一般方程形式上的特点:x2和y2的系数相同,不等于0.没有xy这样的二次项.圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了.与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.练习内化例1:判断下列二元二次方程是否表示圆的方程?如果是,请求出圆的圆心及半径.(1)4x2+4y2-4x+12y+9=0;(2)4x2+4y2-4x+12y+11=0.解:(1)由4x2+4y2-4x+12y+9=0,得D=-1,E=3,F=,而D2+E2-4F=1+9-9=1>0,所以方程4x2+4y2-4x+12y+9=0表示圆的方程,其圆心坐标为(,-),半径为;(2)由4x2+4y2-4x+12y+11=0,得D=-1,E=3,F=,D2+E2-4F=1+9-11=-1<0,所以方程4x2+4y2-4x+12y+11=0不表示圆的方程.点评:对于形如Ax2+By2+Dx+Ey+F=0的方程判断其方程是否表示圆,要化为x2+y2+Dx+Ey+F=0的形式,再利用条件D2+E2-4F与0的大小判断,不能直接套用.另外,直接配方也可以判断.变式训练:求下列圆的半径和圆心坐标:(1)x2+y2-8x+6y=0;(2)x2+y2+2by=0.(2)x2+y2+2by=0配方,得x2+(y+b)2=b2,所以圆心坐标为(0,-b),半径为|b|例2:求过三点O(0,0)、M1(1,1)、M2(4,2)的圆的方程,并求圆的半径长和圆心坐标.解:方法一:设所求圆的方程为x2+y2+Dx+Ey+F=0,由O、M1、M2在圆上,则...