简答题答案:1•空间电荷区是怎样形成的。画出零偏与反偏状态下pn结的能带图。答:当p型半导体和n型半导体紧密结合时,在其交界面附近存在载流子的浓度梯度,它将引起p区空穴向n区扩散,n区电子向p区扩散。因此在交界面附近,p区留下了不能移动的带负电的电离受主,n区留下了不能移动的带正电的电离施主,形成所谓空间电荷区。PN结零偏时的能带图:PN结反偏时的能带图:2.为什么反偏状态下的pn结存在电容?为什么随着反偏电压的增加,势垒电容反而下降?答:①由于空间电荷区宽度是反偏电压的函数,其随反偏电压的增加而增加。空间电荷区内的正电荷与负电荷在空间上又是别离的,当外加反偏电压时,空间电荷区内的正负电荷数会跟随其发生相应的变化,这样PN结就有了电容的充放电效应。对于大的正向偏压,有大量载流子通过空间电荷区,耗尽层近似不再成立,势垒电容效应不凸显。所以,只有在反偏状态下的PN结存在电容。②由于反偏电压越大,空间电荷区的宽度越大。势垒电容相当于极板间距为耗尽层宽度的平板电容,电容的大小又与宽度成反比。所以随着反偏电压的增加,势垒电容反而下降。3.什么是单边突变结?为什么pn结低掺杂一侧的空间电荷区较宽?答:①对于一个半导体,当其P区的掺杂浓度远大于N区〔即Nd>>Na〕时,我们称这种结为P+N;当其N区的掺杂浓度远大于N区〔即Na>>Nd〕时,我们称这种结为N+P。这两类特殊的结就是单边突变结。②由于PN结空间电荷区内P区的受主离子所带负电荷量与N区的施主离子所带正电荷的量是相等的,而这两种带电离子是不能自由移动的。所以,对于空间电荷区内的低掺杂一侧,其带电离子的浓度相对较低,为了与高掺杂一侧的带电离子的数量进行匹配,只有增加低掺杂一侧的宽度。因此,PN结低掺杂一侧的空间电荷区较宽。4•对于突变p+-n结,分别示意地画出其中的电场分布曲线和能带图:答:①热平衡状态时:突变p+-n结的电场分布曲线:(正向偏5.画出正偏时pn结的稳态少子浓度分布图。6.画出正偏pn结二极管电子和空穴电流图。答:答:7.解释pn结二极管扩散电容形成的机制;解释产生电流和复合电流的形成机制。答:①在扩散区中存在有等量的非平衡电子和空穴的电荷,在直流电压下的少子浓度会随其中的交流成分的改变而改变。随着外加电压的变化,由于少子浓度变化而形成的少子电荷存储量的变化AQ不断地被交替充电与放电,从而表现为电容效应,少子电荷存储量的变化与电压变化量的比值即为扩散电容。②反偏产生电流的形成机制:反偏电压下,空间电荷区产生了新的电子一空穴对,由于反偏空间电荷区的电子浓度与空穴浓度为零,这些新产生的电子—空穴对会重新建立新的热平衡。电子—空穴对一经产生,就会被电场扫出空间电荷区。这些被扫出电荷流动产生的电流即为反偏产生电流。正偏复合电流的形成机制:当PN结外加正偏电压时,电子与空穴会穿过空间电荷区注入到相应的区域,电子与空穴在穿越空间电荷区时有可能会发生复合,这局部复合的电子与空穴的相对运动形成的电流即为复合电流。8.什么是存储时间?答:P区与N区均存在过剩载流子。空间电荷区边缘的过剩载流子由正偏PN结电压维持。当外加电压由正偏变为反偏时,空间电荷区边缘处的少子浓度就不能再维持,于是就会慢慢衰减,如下列图所示。突变p+-n结的能带注:画的时候把两条虚线对齐。空间电荷区边缘少子浓度到达热平衡值时所经历的时间ts即为存储时间。存储时间内,反向电流大小是根本不变的。9.为什么随着掺杂浓度的增大,击穿电压反而下降?答:随着掺杂浓度的增大,杂质原子之间彼此靠的很近而发生相互影响,别离能级就会扩展成微带,会使原来的导带底下移,造成禁带宽度变窄,不加外加电压时,能带的倾斜处隧道长度Ax变得更短,当Ax短到一定程度,当加微小电压时,就会使P区价带中的电子通过隧道效应穿过窄窄的禁带而到达N区导带,使得反向电流急剧增大而发生隧道击穿。所以,掺杂浓度越大,禁带宽度越窄,也就越容易发生隧穿,击穿电压也就越小。10.画出有偏压时理想金属半导体结的能带图,在图上标出肖特基势垒。注:左边是N型金属半导体结能带图,右边是P型金属半导体能带图,肖特基势垒图中已标出。11....