我们一直在努力!11.1不等关系学习目的和要求:感受生活中存在的大量不等关系理解不等式的概念初步体会不等关系式刻画量与量之间关系的重要数学模型之一教学重点和难点:重点:对不等式概念的理解难点:怎样建立量与量之间的不等关系。从问题中来,到问题中去。1.如图,用用根长度均为l㎝的绳子,分别围成一个正方形和圆。(1)如果要使正方形的面积不大于25㎝2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积大于100㎝2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)改变l的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l,圆的面积可以表示为22l。(1)要使正方形的面积不大于25㎝2,就是(2)要使圆的面积大于100㎝2,就是(3)当l=8时,正方形的面积为)(416822cm,圆的面积为)(1.54822cm,4<5.1,此时圆的面积大。当l=12时,正方形的面积为)(9161222cm,圆的面积为)(5.1141222cm,9<11.5,此时还是圆的面积大。(4)不论怎样改变l的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l㎝的两根绳子分别围成一个正方形和圆,无论l取何值,圆的面积总大于正方形的面积,即42l>162l2.(1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m的地我们一直在努力!2方作为测量部位。某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m以外的安全区域。已知导火线的燃烧速度为0.2m/s,人离开的速度为4m/s,导火线的长度x(m)应满足怎样的关系式?分析巩固练习:用不等式表示:(1)a的相反数是正数;(2)m与2的差小于32;(3)x的31与4的和不是正数;(4)y的一半与x的2倍的和不小于3。3.下列各数:21,-4,,0,5.2,3其中使不等式2x>1,成立是()A.-4,,5.2B.,5.2,3C.21,0,3D.,5.24.有理数a,b在数轴上的位置如图1-2所示,所baba的值()A.>0B.<0C.=0D.≥0小结提问,快速回答:1.表示不等式关系的符号有哪些?2.用适当的符号表示下列关系:(1)x的5倍与3的差比x的4倍大;(2)a的41的相反数是非负数;(3)x的3倍不小于y的8倍。3.下列不等式中,总能成立的是()A.2a>0B.02aC.2a>aD.2a>a作业要求:1.2不等式的基本性质一、学习目标:1.经历不等式基本性质的探索过程,初步体会不等式与等式的异同。2.掌握不等式的基本性质。二、学习重难点:不等式的基本性质的掌握与应用。我们一直在努力!3三、学习过程:1.比较归纳,产生新知我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。请问:如果在不等式的两边都加上或都减去同一个整式,那么结果会怎样?请兴几例试一试,并与同伴交流。类比等式的基本性质得出猜想:不等式的结果不变。试举几例验证猜想。如3<7,3+1=4,7+1=8,4<8,所以3+1<7+1;3-5=-2,7-5=2,-2<2,所以3-5<7-5;3+a<7+a;3<7,3-a<7-a等。都能说明猜想的正确性。2.探索交流,概括性质完成下列填空。2<3,2×53×5;2<3,2×(-1)3×(-1);2<3,2×(-5)3×(-5);你发现了什么?请再举几例试试,与同伴交流。通过计算结果不难发现:得出不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。3.练习巩固,促进迁移1.(1)用“>”号或“<”号填空,并简说理由。①6+2-3+2;②6×(-2)-3×(-2);③6÷2-3÷2;④6÷(-2)-3÷(-2)(2)如果a>b,则2.利用不等式的基本性质,填“>”或“<”:(1)若a>b,则2a+12b+1;(2)若<10,则y-8;(3)若a<b,且c>0,则ac+cbc+c;(4)若a>0,b<0,c<0,(a-b)c0。在上一级课中,我们猜想,无论绳长L取何值,圆的面积总大于...