-1-一、学奥数到底有什么用对目前绝大部分学奥数的孩子和他们的家长来说,那就是通过各种杯赛获奖得到一个上重点中学试验班的机会,因为现在的升学制度决定了奥数已经成为升学的一个重要手段。其实我们目前学的某些内容,比如抽屉原理等,可能以后在初中甚至高中的课本里我们都根本不可能接触到的,但是我们学习的其实是一些思想方法,更具体的说,是培养一种解决问题的能力。能把小学奥数学好的同学,我相信学习中学的知识的时候,至少在理科方面,那绝对是游刃有余的。二、怎样学好奥数学奥数最佳的起步时间应该是三年级,这个时间启蒙教育特别重要,能不能尽快入门,或者说“开窍“,这是一个很重要的时期。五年级的时候最好就应该把六年级的内容学的差不多了.下面具体谈一下奥数的学习方法学奥数有诀窍吗?根据我学习奥数的经验,答案是没有。但如果非要我说一个的话,那就是“做题”。那么这里就有两个问题了,一是我该做哪些题呢?二是我该做多少,应该怎么做呢?我们先说一下做哪些题,现在市面上的奥数书种类繁多。我觉推荐《华罗庚学校数学课本》,这本书内容不难,适合入门学习。《华罗庚思维训练导引》是一本分类习题集,每个专题15个题目,虽然有的题目偏难,但这本书选题都非常有代表性,值得一做(做三星题目为主)。除了专题训练外,大量的综合练习也是必不可少的,《小学数学ABC》《小学数学奥林匹克试题详解》和刘京友编写的《题库》这3本书非常好。通过做综合练习找出自己问题所在,再集中的有针对性的加强这方面的练习,达到差漏补缺的目的。这就要求我们每次做完题,不会的或者做错的一定要弄明白为止。有的同学可能一天做好几套题目,做完了对对答案,每套错的都不多,自我感觉也不错,做了半天也累了就把书扔下不管了。这样的学习是没有效果的,因为你原先会的还是会,不会的那些呢?还是不会!因此题目不在于你做了多少,关键是你遇到的每一道题目无论你当时是否会做,事后你是否都真正理解了,再遇到类似的题目还会不会做。如果我真正能做到做一套题就把里面所有的题目吃透,那么我学习的效果要比刚才提到的一天做好几套但不注意总结的同学好的-2-多。其实你好好把题目总结一下花不了太多时间,而且对自己的帮助真的很大。希望同学们也能做到这点,至少,对于做错的题目一定要引起重视。每天学习完或者做完题,自己都问问自己,我今天学到了什么新的方法,我哪个题目思路上有问题以后要注意的。总结不光在笔头上,思想上也要经常总结,不能学了半天连自己学会了什么还有哪些该掌握的没掌握都不清楚。质数合数分解质因数1.质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴值得注意的是很多题都会以质数2的特殊性为考点.⑵除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.2.质因数与分解质因数质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.-3-互质数:公约数只有1的两个自然数,叫做互质数.分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235.其中2、3、5叫做30的质因数.又如21222323,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.3.唯一分解定理任何一个大于1的自然数n都可以写成质数的连乘积,即:312123kaaaaknppppL其中为质数,12kaaaLL为自然数,并且这种表示是唯一的.该式称为n的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析: 210=2×3×5×7,∴可知这三个数是5、6和7.4.部分特殊数的分解111337;100171113;1111141271;1000173137...