个人收集整理仅供参考学习1/19八.比和比例239.“比”和“比值”这两个概念有什么联系和区别?在除法中,两个数相除时,就叫做两个数的比。一般分为两种情况:(1)比较同类量的倍数关系,表示其中一个数是另一个数的几倍或几分之几。例如:红光小学有女教师40人,男教师12人。表示女教师与男教师人数的比是40∶12(或化简为10∶3),这也表示女教师人数是男教师人数资料个人收集整理,勿做商业用途(2)两个不同类量相比,是表示一个新的量。例如:总价∶数量,表示单价。路程∶时间,表示速度。总产量∶亩数,表示亩产量。“比”是由前项∶后项组成的,而“比值”是前项除以后项所得的商。如:由此可以看出:“比”和“比值”这两个概念是有区别的。但两者之间也是有联系的,因为没有前面的“比”,就不会有后面的“比值”。就一般而言,“比”和“比值”都是一个完整比的组成部分。资料个人收集整理,勿做商业用途个人收集整理仅供参考学习2/19除此之外,还要看到“比”和“比值”也有着一致性。从广义上解释,两个数的比是两个数的商,这个商也是比值。如:资料个人收集整理,勿做商业用途由于比中的比号相当于分数中的分数线,所以用比的形式表示,就是7∶240.比、除法、分数这三者之间,有什么联系和区别?在小学数学教材中,从除法到分数,又到比,这不仅是一个发展过程,三者之间也存在着内在的必然联系。在比的教与学中,揭示它们之间的联系,是极其必要的。资料个人收集整理,勿做商业用途比的前项相当于除法中的被除数,分数中的他子;后项相当于除法中的除数,分数中的分母;比号柑当于除法中的除号,分数中的分数线;比值相当于除法中的商,分数的分数值。资料个人收集整理,勿做商业用途例如:在比中,前项÷后项=比值a∶b=c在除法中,被除数÷除数=商a÷b=c个人收集整理仅供参考学习3/19如上所述,比、除法、分数三者之间有着如此密切的联系,目的在于:有关比的运算,可以转化为除法运算或分数形式,而又需要重新建立比的运算法则。资料个人收集整理,勿做商业用途它们之间的区别,从意义上区分有:“比”是表示两个数的倍数;“除法”表示的是一种运算;“分数”则是一个数。241.“求比值”和“化简比”有区别吗?在比和比例中,求比值是常用的,但也需要把较复杂的整数比(不包括含有分数、小数的比),化成简单的整数比,这两者是有区别的。资料个人收集整理,勿做商业用途在区别求比值和化简比时,有一种并不全面的说法,即:求比值时用除法(比的前项除以后项);而化简比时,运用的是比的基本性质(比的前项和后项同时乘以或除以一个不等于0的数,比值不变)。这只是看到了问题的一个方面,实际上,求比值也可以运用比的基本性质,而化简比也可以用除法。资料个人收集整理,勿做商业用途=3∶60(前项和后项同乘以10)=1∶20(前项和后项同除以3)个人收集整理仅供参考学习4/19由此看来,用什么方法并不是两者的主要区别。应该看到的是下述情况:比有三种表示形式,一是比的一般形式,如5∶6;一是比的分数形式,既可以认为是比,读作:5比6;也可以认为是比值,读作:六分之五。在就是说,对两者在这样的情况下,不需要严格区别。在小学数学教材中,作为不同的练习形式,又有着求值与化简比的不同要求。为了使学生明确这不同的要求,就必须加以约定,如果是求比值,就把结果写成数的形式(整数、小数或分数);如果是化简比,就把结果写成比的一般形式,以表示这两者练习形式上的区别,至于用什么方法,则不一定强求一致。资料个人收集整理,勿做商业用途242.绘图时如何选择比例尺?比例尺是图上距离和实际距离的比。在绘制地图、操场或教室的平面图以及零件图时,要把实物的长度(或实际距离)缩小若干倍后,再画到纸上,这就用到比例尺。涉及到比例尺的问题,通常有三种情况:资料个人收集整理,勿做商业用途(1)求比例尺。图上距离∶实际距离=比例尺(2)求实际距离。图上距离÷比例尺=实际距离(3)求图上距离。实际距离×比例尺=图上距离这三类情况,除(1)是求比例尺外,(2)(3)本身都有指定比例尺,因此,计算起来并不困难。但是,在绘图时,...