2015年陕西省西安市八校联考高考数学模拟试卷(理科)(五)一、选择题(本大题共12个小题,每小题5分,共60分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并写在答题纸上)1.已知复数z=1+ai(a∈R)(i是虚数单位)在复平面上表示的点在第四象限,且,则a=()A.2B.﹣2C.D.2.设、都是非零向量,下列四个条件中,使=成立的是()A.=﹣B.∥C.=2D.∥且||=||3.已知a=log3,b=3,c=log2,则()A.a<b<cB.b<c<aC.a<c<bD.c<a<b4.已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()A.7B.5C.﹣5D.﹣75.已知函数f(x)=sin(2x+)(x∈R),为了得到函数g(x)=cos2x的图象,只需将y=f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位6.已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸,可得这个几何体的体积是(单位:cm3)()A.πB.2πC.4πD.8π7.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),且f(1)=2,则f(2015)的值为()A.2B.0C.﹣2D.﹣18.阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.20B.21C.200D.2109.设点P为双曲线x2﹣=1上的一点,F1,F2是该双曲线的左、右焦点,若△PF1F2的面积为12,则∠F1PF2等于()A.B.C.D.10.在△OAB中,O为坐标原点,,则当△OAB的面积达最大值时,θ=()A.B.C.D.11.如图,正方体ABCD﹣A1B1C1D1中,P为底面ABCD上的动点,PE⊥A1C于E,且PA=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分12.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f(x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()二、填空题(本大题共4个小题,每小题5分,共20分,把答案直接填在答题纸对应的位置上)13.若(x﹣1)5=a5(x+1)5+a4(x+1)4+a3(x+1)3+a2(x+1)2+a1(x+1)+a0,则a1+a2+a3+a4+a5=.14.与直线x+y﹣2=0和曲线x2+y2﹣12x﹣12y+54=0都相切的半径最小的圆的标准方程是.15.在区间(0,1)上随机取两个数m,n,则关于x的一元二次方程x2﹣•x+m=0有实根的概率为.16.下列说法中,正确的有(把所有正确的序号都填上).①“∃x∈R,使2x>3“的否定是“∀x∈R,使2x≤3”;②函数y=sin(2x+)sin(﹣2x)的最小正周期是π;③命题“函数f(x)在x=x0处有极值,则f'(x0)=0”的否命题是真命题;④函数f(x)=2x﹣x2的零点有2个;⑤dx等于.三、解答题,本大题共5小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.数列{an}满足a1=1,(n∈N+).(1)证明:数列是等差数列;(2)求数列{an}的通项公式an;(3)设bn=n(n+1)an,求数列{bn}的前n项和Sn.18.在长方体ABCD﹣A1B1C1D1中,AD=DC=DD1,过A1、B、C1三点的平面截去长方体的一个角后,得如图所示的几何体ABCD﹣A1C1D1,E、F分别为A1B、BC1的中点.(Ⅰ)求证:EF∥平面ABCD;(Ⅱ)求平面A1BC1与平面ABCD的夹角θ的余弦值.19.为了解今年某校高三毕业班准备报考飞行员学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(1)求该校报考飞行员的总人数;(2)以这所学校的样本数据来估计全省的总体数据,若从全省报考飞行员的同学中(人数很多)任选二人,设X表示体重超过60公斤的学生人数,求X的分布列和数学期望.20.已知动点M到点F(1,0)的距离,等于它到直线x=﹣1的距离.(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过点F任意作互相垂直的两条直线l1,l2,分别交曲线C于点A,B和M,N.设线段AB,MN的中点分别为P,Q,求证:直线PQ恒过一个定点;(Ⅲ)在(Ⅱ)的条件下,求△FPQ面积的最小值.21.已知函数f(x)=(x3﹣6x2+3x+t)ex,t∈R.(Ⅰ)若函数f(x)在点(0,f(0))处的切线方程为4x﹣y+1=0,则求t的值(Ⅱ)若函数y=f(x)有三个不同的极值点,求t的值;(Ⅲ)若存在实数t∈[0,2],使对任意的x∈[1,m],不等式f(x)≤x恒成立,求正整数m的最...