2016-2017学年河南省安阳高一(下)期末数学试卷一、选择题:(共12小题,每小题5分.)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅2.若a<,则化简的结果是()A.B.﹣C.D.﹣3.函数的定义域是()A.B.C.D.4.若角600°的终边上有一点(a,﹣3),则a的值是()A.﹣B.C.D.﹣5.已知△ABC中,tanA=﹣,那么cosA等于()A.B.C.﹣D.﹣6.已知向量=(1,2),=(x,﹣4),若∥,则•等于()A.﹣10B.﹣6C.0D.67.若0<a<1,则函数y=ax与y=(1﹣a)x2的图象可能是下列四个选项中的()A.B.C.D.8.设函数y=x3与y=()x﹣2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.三视图如图的几何体的全面积是()A.B.C.D.10.设函数f(x)=sin(2x+),则下列结论正确的是()A.f(x)的图象关于直线x=对称B.f(x)的图象关于点(,0)对称C.把f(x)的图象向左平移个单位,得到一个偶函数的图象D.f(x)的最小正周期为π,且在[0,]上为增函数11.若将函数y=tan(ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan(ωx+)的图象重合,则ω的最小值为()A.B.C.D.12.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的最大值是()A.2B.2C.3D.2+二、填空题(共4小题,每小题5分.)13.已知A(1,2),B(3,4),C(﹣2,2),D(﹣3,5),则向量在向量上的投影为.14.已知sin(2π﹣α)=,α∈(,2π),则=.15.定义在区间(0,)上的函数y=6cosx的图象与y=5tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段PP2的长为.16.设函数f(x)定义在实数集上,f(2﹣x)=f(x),且当x≥1时,f(x)=lnx,则f(),f(),f(2)三个数由小到大的排列顺序为.三、解答题(解答应写出必要的文字说明和演算步骤)17.已知:向量=(sinθ,1),向量,﹣<θ<,(1)若,求:θ的值;(2)求:的最大值.18.经过点P(6,﹣4),且被圆x2+y2=20截得的弦长为6的直线方程为.19.某医药研究所开发一种新药,据监测,如果成人按规定的剂量服用该药,服药后每毫升血液中的含药量y(μg)与服药后的时间t(h)之间近似满足如图所示的曲线.其中OA是线段,曲线段AB是函数y=k•at(t≥1,a>0,k,a是常数)的图象.(1)写出服药后每毫升血液中含药量y关于时间t的函数关系式;(2)据测定:每毫升血液中含药量不少于2(μg)时治疗有效,假若某病人第一次服药为早上6:00,为保持疗效,第二次服药最迟是当天几点钟?(3)若按(2)中的最迟时间服用第二次药,则第二次服药后在过3h,该病人每毫升血液中含药量为多少μg?(精确到0.1μg)20.如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.求证:(1)直线EF∥面ACD;(2)平面EFC⊥面BCD.21.已知函数y=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤)的图象与y轴相交于点M(0,),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A(,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=,x0∈[,π]时,求x0的值.22.已知函数f(x)=sin2(x+)﹣cos2x﹣(x∈R).(1)求函数f(x)最小值和最小正周期;(2)若A为锐角,且向量=(1,5)与向量=(1,f(﹣A))垂直,求cos2A.2016-2017学年河南省安阳三十六中高一(下)期末数学试卷参考答案与试题解析一、选择题:(共12小题,每小题5分.)1.若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B=()A.{x|﹣1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.∅【考点】1E:交集及其运算.【分析】考查集合的性质与交集以及绝对值不等式运算.常见的解法为计算出集合A、B的最简单形式再运算.【解答】解:由题得:A={x|﹣1≤x≤1},B={y|y≥0},∴A∩B={x|0≤x≤1}.故选C.2.若a<,则化简的结果是()A.B.﹣C.D.﹣【考点】44:根式与分数指数幂的互化及其化简运算.【分析】利用根式的运算性质即可得出.【...