解三角形步骤1.在锐角△ABC中,设三边为a,b,c。作CH⊥AB垂足为点DCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2Ra/SinA=BC/SinD=CD=2R类似可证其余两个等式。二.正弦定理的变形公式(1)a=2RsinA,b=2RsinB,c=2RsinC;(2)sinA:sinB:sinC=a:b:c;a^2=b^2+c^2-2*b*c*CosAb^2=a^2+c^2-2*a*c*CosB1c^2=a^2+b^2-2*a*b*CosCCosC=(a^2+b^2-c^2)/2abCosB=(a^2+c^2-b^2)/2acCosA=(c^2+b^2-a^2)/2bc证明:∵如图,有a+b=c∴c·c=(a+b)·(a+b)∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)整理得到c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)再拆开,得c^2=a^2+b^2-2*a*b*CosC同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。例题:1已知(B+C):(C+A):(A+B)=4:5:6,求此三角形的最大内角解:设b+c=4x,可得a=7x/2,b=5x/2,c=3x/2,再用余弦定理cosA=-1/2,即A=12021.在三角形ABC中,已知(b+c);(c+a);(a+b)=4;5;6,则sinA;sinB;sinC=_________解:、a/sinA=b/sinB=c/sinC(b+c);(c+a);(a+b)=4;5;6(sinB+sinC):(sinC+sinA):(sinA+sinB)=4k:5k:6k解得sinA=7k/2sinB=5k/2sinC=3k/2所以sinA:sinB:sinC=7:5:32